Durham University Anna Felikson

Questions from Problems classes

Problems Class 1 (1 November 2019) Plane curves

- 1. Consider a curve $\alpha(u) = r(u)(\cos u, \sin u)$, where $r: (0, \infty) \to (0, \infty)$ is a function.
 - (a) Show that α is a regular curve.
 - (b) Let $r(u) = \frac{1}{1+u}$. Is the length of α finite?
 - (c) Show that $\kappa(u) = \frac{2r'^2 rr' + r^2}{(r^2 + r'^2)^{3/2}}$ (see also HW 2.4). For the case of r(u) = u, show that $\kappa(u) \to 0$ as $u \to \infty$. For the case of $r(u) = \frac{1}{1+u}$ show that $\kappa(u) \to \infty$ as $u \to \infty$.
- 2. Let $\alpha(u) = (u, \frac{1}{u})$ be a hyperbola considered on the domain $\{u > 0\}$.
 - (a) Find the curvature of α .
 - (b) Are there inflection points and vertices?
 - (c) Find the evolute of α . Find the singular points of the evolute.
- 3. Compute the involute of the circle $(\cos s, \sin s)$. Check that the circle is the evolute for this curve.

Problems Class 2 (15 November 2019) Space curves and surfaces

- 1. Given the curve $\alpha(u) = (2\cos u + 2\sin u, 2\sin u 2\cos u, u),$
 - (a) find the length between $p = \alpha(u_0)$ and $u = \alpha(u_1)$.
 - (b) Show that α is a *generalised helix*, i.e. the tangents to α make a constant angle with some fixed direction.
 - (c) Compute κ and τ .
- 2. Given

$$\boldsymbol{\alpha}(u) = \begin{cases} (u, 0, e^{-1/u^2}), & \text{if } u > 0, \\ (u, e^{-1/u^2}, 0), & \text{if } u < 0, \\ (0, 0, 0), & \text{if } u = 0, \end{cases}$$

show that

- (a) $\boldsymbol{\alpha}$ is a smooth regular curve.
- (b) $\kappa(u) \neq 0$ if $u \neq 0$ and $u \neq \pm \sqrt{\frac{2}{3}}$.
- (c) Find the osculating plane at $\alpha(u)$.

3. $S = \{u^3 - u, u^2 - 1, v\}$. Is it a local parametrisation?

Problems Class 3 (29 November 2019) First fundamental form.

- 1. Show that $x(\varphi, \theta) = (\cos \varphi \sin \theta, \sin \varphi \sin \theta, \cos \theta)$, where $\theta \in (0, \pi/2)$, $\varphi \in (0, \pi)$ is a local parametrisation of a unite sphere centered at origin.
- 2. Let $\alpha(v) = (\frac{1}{v}, 0, \operatorname{arccosh} v \frac{\sqrt{v^2 1}}{v}), v \in (1, \infty)$ be a curve, and let S be a surface of revolution defined by the curve α :

$$x(u,v) = \left(\frac{\cos u}{v}, \frac{\sin u}{v}, \operatorname{arccosh} v - \frac{\sqrt{v^2 - 1}}{v}\right)$$

Show that the first fundamental form of S coincides with the one of the upper half-plane model of the hyperbolic plane (see Example 7.16), i.e. $E = G = 1/v^2$, F = 0.

3. Given a cylinder $x(\theta, z) = (\cos \theta, \sin \theta, z)$, find the first fundamental form. Compare with the first fundamental for m of the plane.

Problems Class 4 (13 December 2019) Gauss map. Coordinate curves.

- 1. Compute Gauss map of the catenoid $x(u, v) = (\cosh v \cos u, \cosh v \sin u, v)$.
- 2. Let $f(x, y, z) = (x^2 + y^2 1)^2$. For which $c \in \mathbb{R}$ the set $\{f(x, y, z) = c\}$ is a regular surface?
- 3. Let $x(u,v) = (u, v, \sqrt{1 u^2 v^2})$ be a hemisphere.
 - (a) Find E, F, G.
 - (b) Compute the angle between coordinate curves at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}})$.
 - (c) Let $\alpha(s) = x(\frac{1}{2}\cos s, \frac{1}{2}\sin s), s \in (0, 2\pi)$. Find the length $l(\alpha)$.

Problems Class 5 (7 February 2020) Isometries and conformal maps.

- 1. Let $f: S \to \widetilde{S}$ be a map preserving all angles between the curves. Show that f is conformal. (click here for the main steps of the solution)
- 2. Let $\mathbb{H} = (u, v) \in \mathbb{R}^2 \mid v > 0$ be the upper half-plane with the second fundamental form given by $E = \frac{1}{v^2}, F = 0, G = \frac{1}{v^2}$. Let $f : \mathbb{H} \to H$ be given by f(z) = az + b, where $a, b \in \mathbb{R}, a > 0$. Show that f is an isometry of \mathbb{H} .
- 2'. The same question for $f = \frac{az+b}{cz+d}$ where $a, b, c, d \in \mathbb{R}$, ad bc > 0.

Principal directions in terms of I_p and II_p .

3. Let $\{x_u, x_v\}$ be a basis of T_pS , $w = \lambda x_u + \mu x_v$.

Show that w is a principal direction if and only if

$$\det \begin{pmatrix} \mu^2 & -\lambda\mu & \lambda^2 \\ E & F & G \\ L & M & N \end{pmatrix} = 0$$

Problems Class 6 (21 February 2020) Computation of Gauss and mean curvatures. Minimal surfaces.

- 1. Consider a surfaces S given by the parametrisation $x(r, \varphi) = \left(\frac{r}{\sqrt{2}}\cos(\sqrt{2}\varphi), \frac{r}{\sqrt{2}}\sin(\sqrt{2}\varphi), r\right), r \in (0, \infty), \varphi \in \mathbb{R}.$
 - (a) Find Gauss and mean curvatures of S.
 - (b) Show that S is locally isometric to a plane. Notice that the mean curvature of S is not zero (unlike the mean curvature of the plane).
 - (c) Is S a minimal surface?
- 2. Show that the helicoid $(av \cos u, av \sin u, bu), u \in \mathbb{R}, v \in (0, \infty)$ is a minimal surface.

Remark.

- 1. The only surface of revolution (other than the plane) which is also a minimal surface is catenoid given by $x(u, v) = (a \cosh v \cos u, a \cosh v \sin u, av)$ (see Do Carmo, Section 3.5 B, Example 5.).
- 2. A helicoid is the only ruled surface (other than the plane) which is also a minimal surface (see Do Carmo, Section 3.5 B, Example 6.).
- 3. Helicoid and catenoid can be joined by a one-parameter family of isometries (see Do Carmo, Section 3.5, Exercise 14). See also the video for the illustration.

Problems Class 7 (6 March 2020) Curves on surfaces

- 1. Find the asymptotic curves on $x^2 + y^2 z^2 = 1$ (computation-free solution).
- 2. Let κ_1 and κ_2 be principal curvatures at $p \in S$. Show that κ_1, κ_2 are the minimal and the maximal value of the normal curvature $\kappa_n(\boldsymbol{w})$, where $||\boldsymbol{w}|| = 1, \boldsymbol{w} \in T_pS$.
- 3. Consider the upper half-plane model of hyperbolic plane (i.e. the upper half-plane $\{(u,v) \in \mathbb{R}^2 \mid v > 0\}$ with the first fundamental form given by $E = G = 1/v^2$, F = 0. Find a geodesic through the point *i* with tangent vector w = (1,0) at *i*. *Hint:* use isometries of the upper half-plane to show that all geodesics on it are given by rays and semisicles orthogonal to the boundary.
- 4. Let S be the elliptic paraboloid $x = (u, v, u^2 + v^2)$. Find the lines of curvature on S.

Problems Class 8 (Was scheduled to 20 March 2020, now cancelled due to Coronavirus. See detailed solutions on DUO or on course webpage) Gauss-Bonnet Theorems

- 1. The aim of this question is to verify the Gauss-Bonnet theorem for a region R on the surface S given by the local parametrisation $x(u, v) = (v \cos u, v \sin u, v^2)$, where the region R is defined by $0 \le u \le 2\pi$, $0 \le v < 1$.
 - (a) State the global Gauss-Bonnet Theorem.
 - (b) Compute the coefficients of the first and second fundamental forms on S.
 - (c) Compute Gauss curvature K, calculate $\int_{B} K dA$.
 - (d) Show that the curve $\gamma(u) = x(u, 1)$ is unit speed. Find the geodesic curvature κ_g and compute $\int_{\partial R} \kappa_g ds$.
 - (e) Compute the Euler characteristic $\chi(R)$ of the region R. Verify the Gauss-Bonnet theorem for the region R.

Remark: in part (d), be careful to chose the correct orientation of γ . By definition, it should be counter-clockwise – when the normal to the surface is **upward**. Notice that the opposite choice of the orientation will give the opposite sign to the $\int_{\partial R} \kappa_g ds$ and the computation in part (e) will not work!

2. Oriented closed surfaces of constant curvature:

It is known that an oriented closed surface is a sphere with a non-negative integer number of handles (a sphere with g handles is called a surface of genus g and will be denoted by S_q).

- (a) (was not planned for discussion in the Problems Class) Show by induction on g that $\chi(S_g) = 2 - 2g$.
- (b) Suppose that S_g is a surface of constant curvature K. Show that
 - if g = 0 then K > 0;
 - if q = 1 then K = 0;
 - if q > 1 then K < 0.