Questions for Revision Lecture

1. Let Surfaces S_1 and S_2 be given by

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2\} \qquad S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2z = 1\}.$$

Let $\alpha = S_1 \cap S_2$ be the set obtained by the intersection of the surfaces.

- (a) Parametrise α so that α is a regular curve. Compute its curvature and torsion.
- (b) Find the evolute of α .
- (c) Find the vertices of α . Does α have inflection points?
- 2. Let $\alpha : I \to R^3$ be a curve parametrised by arc length with curvature $\kappa(s) \neq 0, s \in I$. Let Π be a plane satisfying both of the following conditions:
 - (i) Π contains the tangent line at s.
 - (ii) Given any neighborhood $J \subset I$ of s, there exist points of $\alpha(J)$ in both sides of Π .

Prove that Π is the osculating plane of α at *s*. *Hint:* use the local canonical form of α .

- 3. Let $S(u,v) = (v \cos u, v \in u, \cosh v)$. Let R be the part of S(u,v) = (x(u,v), y(u,v), z(u,v)) given by $x^2 + y^2 \le 2$ and $x \ge 0$. Verify the Gauss-Bonnet theorem for region R on S.
- 4. Let $C \in \mathbb{R}^3$ be a cylinder given by $x^2 + y^2 = 1$. Is there a self-intersecting geodesic on C?