Exercise on involute and evolute

Exercise: Let $\beta(u): I \to \mathbb{R}^2$ be a smooth regular curve. Suppose that $\kappa(u) \neq 0$ on I. Consider

$$\boldsymbol{\gamma}(u) = \boldsymbol{\beta}(u) - l_{\beta}(u)\boldsymbol{t}_{\beta}(u).$$

Show that $\beta(\mathbf{u})$ is the evolute of $\gamma(\mathbf{u})$ (and hence, that $\gamma(u)$ is an involute of $\beta(\mathbf{u})$.

Solution: We need to show that

$$\boldsymbol{\beta}(u) = \boldsymbol{\gamma}(u) - \frac{1}{\kappa_{\gamma}(u)} \boldsymbol{n}_{\gamma}(u).$$

By definition of $\gamma(u)$ this means that we want to show

$$\boldsymbol{\beta}(u) = (\boldsymbol{\beta}(u) - l_{\boldsymbol{\beta}}(u)\boldsymbol{t}_{\boldsymbol{\beta}}(u)) - \frac{1}{\kappa_{\boldsymbol{\gamma}}(u)}\boldsymbol{n}_{\boldsymbol{\gamma}}(u).$$

So, it is sufficient to show that

$$0=-l_eta(u)oldsymbol{t}_eta'(u)-rac{1}{\kappa_\gamma(u)}oldsymbol{n}_\gamma(u).$$

For simplicity we will assume that $\kappa_{\beta}(u) > 0$ (the case of $\kappa_{\beta}(u) < 0$ is very similar). Then we will show that

- (1) $\boldsymbol{n}_{\gamma}(u) = \boldsymbol{t}_{\beta}(u)$ and
- (2) $\kappa_{\gamma}(u) = -\frac{1}{l_{\beta}(u)}$

(check that if $\kappa_{\beta}(u) < 0$, then $\boldsymbol{n}_{\gamma}(u) = -\boldsymbol{t}_{\beta}(u)$ and $\kappa_{\gamma}(u) = \frac{1}{l_{\beta}(u)}$).

Also, for simplicity we assume that u is the unit length parameter for β (this assumption does not change the definition γ as no of its elements depends of the parametrisation (indeed, the point $\beta(u)$, the length of a piece the the curve $l_{\beta}(u)$ and the unit tangent vector $t_{\beta}(u)$ does not depend of the parametrisation).

Step 1. To show $\boldsymbol{n}_{\gamma}(u) = \boldsymbol{t}_{\beta}(u)$, compute $\boldsymbol{\gamma}'(u)$:

$$\boldsymbol{\gamma}'(u) \stackrel{\text{def}}{=} \boldsymbol{\gamma} \boldsymbol{\beta}'(u) - l_{\beta}'(u) \boldsymbol{t}_{\beta}(u) - l_{\beta}(u) \boldsymbol{t}_{\beta}'(u) \stackrel{l_{\beta}'(u)=1}{=} \boldsymbol{\beta}'(u) - \boldsymbol{\beta}'(u) - l_{\beta}(u) \boldsymbol{t}_{\beta}'(u) \stackrel{\boldsymbol{t}_{\beta}'(s)=\kappa_{\beta}(s)\boldsymbol{n}_{\beta}(s)}{=} - l_{\beta}(u)\kappa_{\beta}(u)\boldsymbol{n}_{\beta}(u).$$

This implies that $t_{\gamma}(u)$ is parallel to $n_{\beta}(u)$, and hence, we conclude that $n_{\gamma}(u)$ is parallel to $t_{\beta}(u)$ (as the normal vector is orthogonal to the corresponding tangent). Since both $n_{\gamma}(u)$ and $t_{\beta}(u)$ are unit vectors we conclude that $\mathbf{n}_{\gamma}(u) = \pm \mathbf{t}_{\beta}(u)$. Finally, taking in account that $\mathbf{t}_{\gamma}(u) = -C(u)\mathbf{n}_{\beta}(u)$ with positive $C(u) = l_{\beta}\kappa_{\beta}(u)$, by rotating n_{β} clockwise and t_{γ} anti-clockwise, we obtain that $n_{\gamma}(u) = t_{\beta}(u)$

Step 2. Now, we need to prove $\kappa_{\gamma}(u) = -\frac{1}{l_{\beta}(u)}$. To compute $\kappa_{\gamma}(u)$, we need to take in account that u is not the unit speed parameter for γ . Denote \hat{s} the unit speed parameter for γ . From Lecture 7, formula (*) we have $\frac{d}{du} = \frac{d\hat{s}}{du}\frac{d}{d\hat{s}} = ||\gamma'(u)||\frac{d}{d\hat{s}}$. Hence,

$$\boldsymbol{t}_{\gamma}'(\boldsymbol{u}) \stackrel{(*)}{=} ||\boldsymbol{\gamma}'(\boldsymbol{u})|| \frac{d}{d\hat{s}} \boldsymbol{t}_{\gamma}(\boldsymbol{u}(\hat{s})) = ||\boldsymbol{\gamma}'(\boldsymbol{u})|| (\boldsymbol{t}_{\gamma}(\hat{s}))' \stackrel{\boldsymbol{t}_{\gamma}'(\hat{s}) = \kappa_{\gamma}(\hat{s})\boldsymbol{n}_{\gamma}(\hat{s})}{=} ||\boldsymbol{\gamma}'(\boldsymbol{u})|| \kappa_{\gamma}(\hat{s})\boldsymbol{n}_{\gamma}(\hat{s}).$$

At the same time, by Step 1 we have $||\gamma'(u)|| = l_{\beta}(u)\kappa_{\beta}(u)$, so we conclude

$$\boldsymbol{t}_{\gamma}'(u) = l_{\beta}(u)\kappa_{\beta}(u)\kappa_{\gamma}(u)\boldsymbol{n}_{\gamma}(u)$$

Since by Step 1 $\mathbf{t}_{\gamma}(u) = -\mathbf{n}_{\beta}(u)$, we have $\mathbf{t}_{\gamma}'(u) = -(n_{\beta}(u))' = -\kappa_{\beta}(u)\mathbf{t}_{\beta}(u)$ and therefore

$$-\kappa_{\beta}(u)\boldsymbol{t}_{\beta}(u) = l_{\beta}(u)\kappa_{\beta}(u)\kappa_{\gamma}(u)\boldsymbol{n}_{\gamma}(u)$$

Reducing by $\kappa_{\beta}(u)$ and taking in account that $\mathbf{n}_{\gamma}(u) = \mathbf{t}_{\beta}(u)$ in view of Stop 1, we get $-1 = l_{\beta}(u)\kappa_{\beta}(u)$ as required.

Remark. As you can see, the computation is not short, so it is not really supposed that you can complete it without help! (and definitely there is no reason to memorise...)