How to construct the vertices of regular icosohedron/dodecahedron on S^{2} with spherical ruler \& compass?

$?$

1. We can construct regular tetrahedron: (i.e construct triangle with $(\alpha, \beta, \gamma)=\left(\frac{2 \pi}{3}, \frac{2 \pi}{3}, \frac{2 \pi}{3}\right)$)

- Draw any regular triangle
- Construct angle $\frac{2 \pi}{3}$
- Construct length $\frac{2 \pi}{3}$.
- Construct length $\pi / 3$
- Construct triangle with $(a, b)=\left(\frac{\pi}{3} \frac{\pi}{3} \frac{\pi}{3}\right)$
- Take polar to get triangle with $(\alpha, \beta t)=\left(\frac{2 \pi}{3}, \frac{2 \pi}{3}, \frac{2 \pi}{3}\right)$

1. We can construct regular tetrahedron. (see Prefers Class 3)
2. Embed it into the dodecahedron:

(which we don't know how to construct yet!)
3. We can construct regular tetrahedron. (see Proteins (lass 3)
4. Embed it into the dodecahedron:

5. Draw the vertices of the dual tetrahedron (as centres of faces for the firstors they are also antipodal. to the vertices of initial tetamelean)
6. We can construct regular tetrahedron. (see Prob bens Class 3)
7. Embed it into the dodecahedron:

8. Dual tetrahedron
9. Given vertices of the tetrahedron, can construct midpoints of six edges las midpoints of edges of the get an tetrahedron l
10. We can construct regular tetrahedron. (see Proteins Class 3)
11. Embed it into the dodecahedron:

12. Dual tetrahedron
13. midpoints of six edges
14. construct lines containing vertices of the octohedron from a pentagon Where we know a pts)

15. In a face, consider a circle of radius $A B$: $C_{B}(A B)$ and $C_{A}(A B)$ in intersection with the opposite side get a vertex

- The last vertex is on distances $A B$ from both new vertices
- This way we reconstruct vertices of all 12 faces!
- We constructed vertices of dodecahedron.
- Vertices of icosahedron can be constructed as centres of pentagonal faces

Bonus 1 How to draw a dodecahedron:

Bonus 2: How to draw an icosahedron:

