
Geometry III/IV

Circles in Euclidean geometry

Some facts and proofs

aaaaa Facts ...

Fact 1. For any three non-collinear points on the Euclidean plane E
2 there exists a

unique circle passing through these three points.

Fact 1’. Every triangle has a unique circumscribed circle.

Fact 2. Three perpendicular bisectors of a triangle do intersect in one point.

Fact 3. For a circle c and two points X, Y on c there exists a unique line or circle
orthogonal to c and passing through X and Y .

Fact 4. An inversion with respect to a circle c preserves lines and circles orthogonal
to c.

Fact 5. Lines and circles not orthogonal to a circle c are not preserved by inversion
with respect to c.

Fact 6. Let c be a circle and let A, B be two points not in c. Then there exists a
unique line or circle orthogonal to c and passing through A and B.

Fact 7. Let c be a circle and c′ be a line or circle c ⊥ c′. Let A be any point not in
c∩ c′. Then there exists a unique line or circle c1 passing through A and orthogonal
to both c and c′.

Fact 8. Stereographic projection coincides with the restriction to the sphere of a
suitable inversion.

Fact 9. Let AB be a diameter of a circle c and C any other point. Then ∠ACB =
π/2 if and only if C ∈ c.

aaaaaaaaaaaaaa ... and Proofs

Fact 1. For any three non-collinear points on the Euclidean plane E
2 there exists a

unique circle passing through these three points.

Proof. Let A, B, C be three non-collinear points. Let M be a midpoint of the seg-
ment AB and let N be a midpoint of BC. Let l1 be a line through M orthogonal
to AB and let l2 be a line through N orthogonal to BC. Since A, B and C are not
collinear, l1 is not parallel to l2. Denote by O their intersection point O = l1 ∩ l2
(see Fig.1.a).

The triangles OMA and OMB are congruent (by SAS: OM = OM , ∠OMA =
∠OMB = π/2, MA = MB). This implies OA = OB. Similarly, using triangles
ONB and ONC we get OB = BC. Hence, the circle of radius OA centered at O
passes through all three points A, B and C.

We are left to show that a circle through three given points is unique. It is clear
that there is no other circle through the same three points centered at the same
point O.



Suppose there is a circle centered at another point O′. Let M ′ and N ′ be orthogo-
nal projections of O′ to AB and BC respectively (i.e. O′M ′ ⊥ AC and O′N ′ ⊥ BC),
see Fig. 1.b). Then right-angled triangles O′M ′A and O′M ′C are congruent since
AO′ = CO′ and O′M ′ = O′M ′. This implies AM ′ = M ′C. Hence, O′M ′ ∈ l1 as
O′M ′ ⊥ AC and M ′ is a midpoint of AC. By the similar reasons, O′N ′ ∈ l2. So
O′ = l1 ∩ l2. However, the line l1 and l2 have a unique intersection points O. This
contradicts to the assumption that there exists a circle through A, B, C centered at
O′ 6= O. Hence, the circle through three non-collinear three points is unique.
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Figure 1

We can reformulate Fact 1 as follows:

Fact 1’. Every triangle has a unique circumscribed circle.

Remark. The lines l1 and l2 in the proof of Fact 1 are called perpendicular bisectors.
(A perpendicular bisector for a segment is a line orthogonal to the segment and
passing through its midpoint).

Fact 2. Three perpendicular bisectors of a triangle do intersect in one point.

Proof. Let l1, l2, l3 be the three perpendicular bisectors. Then each two of them
intersect at the center of the circumscribed circle, so all three of them pass through
the center of the circumscribed circle.

�

Remark. A very similar reasoning involving angle bisectors allows to prove the
following to statements:

• Every triangle has an inscribed circle.
• Three angle bisectors of a triangle do intersect in one point.

(Here an inscribed circle is a circle tangent to all three sides of a triangle and an
angle bisectors is a ray decomposing the angle into two equal angles).

Fact 3. For a circle c and two points X, Y on c there exists a unique line or circle
orthogonal to c and passing through X and Y .

Proof. Denote by O the center of the circle and by lX and lY the tangent lines at
point X and Y .

First, suppose that the points X and Y do not lie on one diameter. Then lX is
not parallel to lY . Denote O′ = lX ∩ lY . Consider a circle c′ of radius O′X centered
at O′. It is orthogonal to lX and lY as O′X and O′Y are its radii. Hence c′ is a
circle orthogonal to c and passing through X and Y .



To show uniqueness of such a circle, suppose there is another one centered at
O′′ 6= O′. The O′′X ⊥ OX and O′′Y ⊥ OY which implies that O′′ ∈ lX ∩ lY .
However, the unique intersection point of lX and lY is O′. The contradiction implies
uniqueness.

Suppose now that X and Y do lie on one diameter. Then l1 does not intersect l2,
so there is no circle through X and Y orthogonal to c. So, the line XY is a unique
line or circle through X and Y orthogonal to c.
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Remark. (Another proof of the uniqueness.)
Suppose that there are two lines or circles c1, c2 orthogonal to c and passing through
X and Y . Consider a Möbius map f taking X and Y to 0 and ∞. f maps c1, c2

and c to three (distinct) lines through 0, two of them orthogonal to the third. This
is impossible.

Fact 4. An inversion with respect to a circle c preserves lines and circles orthogonal
to c.

Proof. Let c′ be a circle or line orthogonal to c and let X and Y be two intersection
points of c and c′ (there are two distinct points, otherwise c′ is tangent to c, but not
orthogonal). Inversions preserves angles. So, inversion with respect to c takes c′ to
a circle or line orthogonal to c and passing through X and Y . In view of uniqueness
of such a line, we get f(c′) = c′, as required.
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Fact 5. Lines and circles not orthogonal to a circle c are not preserved by inversion
with respect to c.

Proof. Let Ic be inversion with respect to c. Let c′ be a line or circle not orthogonal
to c. If c′ does not intersect c or intersect c in a unique point (i.e. c′ is tangent
to c) then c′ lies either entirely inside the disk bounded by c or entirely onside the
disk. This means that Ic takes c′ outside (respectively inside) the disk and does not
preserve it.

Suppose now that c′ intersects c in two points, c′ is not orthogonal to c and
Ic(c

′) = c′. Then Ic takes an acute angle formed by c and c′ to a obtuse one, which
contradicts to the fact that inversion preserves angles. The contradiction shows that
Ic(c

′) 6= c′.
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Fact 6. Let c be a circle and let A, B be two points not in c. Then there exists a
unique line or circle orthogonal to c and passing through A and B.

Proof. Let Ic be an inversion with respect to c. Denote A′ = Ic(A).
If the points A, A′ and B are collinear, let c′ be a line containing these three

points. Otherwise, by Fact 1 there exists a unique circle c′ through A, A′ and B.
Notice that the line or circle c′ intersects c at some point X (one of the points A and
A′ is inside the disk bounded by c, another is outside). Furthermore, Ic preserves
X and swaps A and A′, in other words, Ic preserves the triple A, A′, X. Hence,
Ic(c

′) = c′ (by uniqueness of line or circle through three points). In view of Fact 5
this implies that c′ is orthogonal to c.

We are left to prove uniqueness of c′. Suppose that there exists another line or
circle c′′ orthogonal to c and passing through A and B. Since c′′ ⊥ c, we have



Ic(c
′′) = c′′ (Fact 4). Hence, Ic(A) ∈ c′′, so that c′′ is a circle or a line through

A, A′, B. By uniqueness of such a circle or a line (Fact 1) we conclude c′′ = c.
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Exercise. Let c be a circle, let X be a points on c and A be a point not on c. Show
that there exists are unique line or circle orthogonal to c and passing through X
and A.

Fact 7. Let c be a circle and c′ be a line or circle c ⊥ c′. Let A be any point not in
c∩ c′. Then there exists a unique line or circle c1 passing through A and orthogonal
to both c and c′.

Proof. Suppose that A /∈ c′ (the case A ∈ c′, A /∈ c is similar). Let A′ = Ic′(A)
be the image of A under the inversion with respect to c′. Let c1 be a circle or line
passing through A and A′ and orthogonal to c (it does exists by Fact 6). Then
Ic′(c1) = c1 (since Ic′ swaps points A and A′ and preserves c1 ∩ c). This implies
(by Fact 5) that c1 is orthogonal to c′. As c1 ⊥ c and A ∈ c1, the existance part is
proved.

To prove uniqueness, notice that the line or circle orthogonal to c′ and containing
A should also contain Ic′(A). So, we are searching for a line or circle containing A,
A′ and orthogonal to c. By Fact 6 this line is unique.
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Fact 8. Let S be a sphere centered at O, let Π be a plane through O. Let l = π∩S be
a great circle and let N = Pol(l) be a point polar to l. Denote by σ the stereographic
projection from N to Π. Denote by S1 a sphere centered at N and containing l, and
denote by I1 the inversion with respect to S1.

Then the restriction of the inversion I1 to the sphere S coincides with the stereo-
graphic projection σ.

Proof. Ic takes the sphere S to the plane Π (since inversion preserves angles and the
sphere S1 is a bisector of the angle formed by S and Π). I1 also takes each point A
to a point on the ray NA. So, for any point A ∈ S the inversion I1 takes A to the
unique point of the intersection Π ∩NA. This is the definition of the stereographic
projection.

�

Fact 9. Let AB be a diameter of a circle c and C any other point. Then ∠ACB =
π/2 if and only if C ∈ c.

Proof. First, suppose that C ∈ c. Let O be a center of c. Then triangles ACO and
BCO are isosceles. Hence, ∠ACO = ∠CAO and ∠BCO = ∠CBO. This implies
that

∠ACB = ∠ACO + ∠BCO = ∠CAO + ∠CBO == ∠CAB + ∠CBA.

Since ∠ACB + ∠CAB + ∠CBA = π, we conclude ∠ACB = π/2.
Now, suppose that C ′ lies inside the disk bounded by the circle c. Without loss of

generality we assume that C is intersection of the ray OC ′ and the circle c′. Since
∠C ′AB < ∠CAB and ∠C ′BA < ∠CBA, we see that ∠AC ′B > ∠ACB = π/2.

Similar reasoning shows that for a point C ′′ outside the disk bouded by c we have
∠AC ′′B < ∠ACB = π/2.
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