Geometry, 22.1.2017

Questions from Problems classes

Problems Class 1 (24 October 2016) Using reflections for solving problems. Geometric constructions.

- 1. Let $R_{A,\varphi}, R_{B,\psi}$ be rotations about points $A, B \in E^2$ by angles $0 \leq \varphi, \psi \leq \pi$. What is $R_{B,\psi} \circ R_{A,\varphi}$?
- 2. Let l be a line and A, B be two points not on l. Find a shortest path from A to B passing through at least one point of l.
- 3. Given ruler and compass, construct:
 - (a) a perpendicular bisector to a given segment AB;
 - (b) a line passing through a given point A and perpendicular to a given line l;
 - (c) a midpoint for a given segment AB;
 - (d) an angle bisector;
 - (e) a circumscribed circle for a given triangle;
 - (f) an inscribed circle for a given triangle.

Remark. Not everything is constructible!

In particular, squaring a circle, duplicating a cube and trisecting an angle are not. (See G. Jones, Algebra and Geometry, Lecture notes, Section 8).

Problems Class 2 (7 November 2016) Discrete group actions

- 0. Let $G = \langle g_1, \ldots, g_n \rangle$ be the group generated by $g_1, \ldots, g_n \in Isom(\mathbb{E}^n)$. Then $G : \mathbb{E}^2$.
- 1. Let $G = \langle r_1, r_2 \rangle$ be the group generated by two reflections on \mathbb{E}^2 . When G is discrete?
- 2. Let G be a group generated by reflection with respect to the sides of isosceles right-angled triangle.
 - (a) Show that $G : \mathbb{E}^2$ is discrete.
 - (b) Find a fundamental domain for the action;
 - (c) Find the orbit-space for the action (see Def. 1.28 in the outlines).
- 4. Find the orbit-spaces for the following actions:
 - (a) $\mathbb{Z} : \mathbb{E}^1$ be shifts, $f_n(x) = x + n$;
 - (b) $\mathbb{Z}^2 : \mathbb{E}^2$ be translations in two non-collinear directions.
- 5. $G = \langle r_1, r_2 \rangle$, where r_1, r_2 are reflections with respect to two lines forming an angle $2\pi/3$. Find the fundamental domain for the action $G : \mathbb{E}^2$.

Problems Class 3 (21 November 2016) Spherical geometry

- 1. Show that the fixed points of isometries on S^2 distinguish the types of isometries.
- 2. Let G be a reflection, $h \in Isom(S^2)$. Show that g is conjugate to h in $Isom(S^2)$ if and only if h is a reflection.
- 3. Let T be a regular tetrahedron.
 - (a) Find the group G = Isom(T) of symmetries of T.
 - (b) Show that G acts discretely on the unit sphere centred at the centre of T.

Remark-Definition By a *regular* polyhedron we mean a polyhedron P whose group of symmetries acts transitively on its flags (i.e. on triples (v, e_v, f_e) where v is a vertex of P, e is an edge containing v, and f is a face containing e).

4. (Area of a slice on a sphere).

Let α and β be two parallel planes crossing the sphere. Let $h = d(\alpha, \beta)$ be the distance between α and β in \mathbb{E}^3 . Let $A_{\alpha,\beta}$ be the area of the part of the sphere bounded by these planes. Show that $A_{\alpha,\beta}$ only depends on h (and the radius R of S^2) but not on the place where the planes cut the sphere.

Problems Class 3 (5 December 2016) Projective geometry

- 1. Find a projective transformation f which takes $A=(1:0:0) \text{ to } (0:0:1), \, B=(0:1:0) \text{ to } (0:1:1)$
 - C = (0:0:1) to (1:0:1), D = (1:1:1) to (1:1:1)
- 2. In the above notations, let $X = AD \cap BC$. Find f(X).
- 3. Calculate [A, B, C, D]. (It is not defined as they are not collinear!)
- 3'. Calculate [A, B, E, F], where E = (1 : 1 : 0), F = (1 : 2 : 0).
- 4. Check that f preserves [A, B, E, F] (i.e. that [A, B, E, F] = [f(A), f(B), f(E), f(F)]
- 5. Let $A_1, A_2, A_3, A_4 \in a$ be the points lying on the line a, let $B_1, B_2, B_3, B_4 \in b$ be the points lying on the line b. Let $p_i = A_i B_i$. Suppose that the lines p_1, p_2, p_3, p_4 are concurrent. Show that then the points $A_{i+1}B_i \cap A_iB_{i+1}$ are collinear.
- 6. Write (and prove) the statement dual to one in Question 3.

Problems Class 5 (22 January 2017) Inversions and Möbius transformations

- 1. Find the type of the Möbius transformation $f(z) = \frac{1}{z}$.
- 2. Let f, g be reflections or inversions. Show that $g \circ f = f \circ g$ if and only if Fix_f is orthogonal to Fix_g .
- 3. I_1 is an inversion with respect to the circle with centre 0 and radius 1. $I_{\sqrt{2}}$ is an inversion with respect to the circle with centre -i and radius $\sqrt{2}$. Show that $r = I_{\sqrt{2}}I_1I_{\sqrt{2}}$ is a reflection.
- 4. Let $\gamma_1, \ldots, \gamma_5$ be circle all passing through the same points $A, B \in \mathbb{R}^2$. Show that there exists a circle \mathcal{C} orthogonal to all circles γ_i .
- 5. Prove Ptolemy's Theorem: for a cyclic quadrilateral ABCD holds $|AB| \cdot |CD| + |BC| \cdot |DA| = |AC| \cdot |BD|$.

(three proofs: (a) with cross-ratios, as in HW; (b) with inversion; (c) "proof without words" from http://www.cut-the-knot.org/proofs/PtolemyTheoremPWW.shtml).

Problems Class 6 (6 February 2017) Poincaré disc model of hyperbolic geometry

0. A hyperbolic isometry is uniquely determined by images of three points on the absolute.

Definition. Two lines on the hyperbolic plane may

- either intersect,
- or have a unique common point (then they are called *parallel*),
- or have no common points in $\mathbb{H}^2 \cup \partial \mathbb{H}^2$ (then they are called *divergent* or *ultra-parallel*.
- 1. Show that any two divergent lines have a unique common perpendicular (i.e. if $l_1, l_2 \subset \mathbb{H}^2$ are divergent then there exists a unique line l' such that $l' \perp l_1$ and $l' \perp l_2$).
- 2. A hyperbolic line is "infinitely long".

Definition. A hyperbolic polygon with all vertices on the absolute is called an *ideal* polygon. **Remark:** Ideal polygons have zero angles.

- 3. (a) Show that up to applying an isometry, there exists a unique hyperbolic ideal triangle.
 - (b) Show that hyperbolic ideal quadrilaterals modulo isometries form a 1-parameter family.
 - (c) How many hyperbolic ideal *n*-gons are there?

Problems Class 7 (20 Febuary 2017) Elementary hyperbolic geometry

- 1. Compute the area of a disc of radius r.
- 2. Let $\mathbf{O}(\mathbf{r})$ be a hyperbolic orange of radius r with a pulp of radius $9/10 \cdot r$ and a thin peel which is only $1/10 \cdot r$ thick. Show that for large $r \to \infty$ almost all volume of the orange is the peel.
- 3. Remarks on regular polygons:
 - **Definition:** a polygon (or more generally, a polytope in *n*-dim) is regular if the group of its symmetries acts transitively on its flags (where a flag is a vertex A_1 , with an edge A_1A_2 from this vertex, with a 2-face $A_1A_2A_3$ through that edge, ..., with an (n-1)-face $A_1A_2...A_{n-1}$).
 - In 2-dimensional case (for all of $S^2, \mathbb{E}^2, \mathbb{H}^2$): A polygon is regular iff all its angles are of the same size and all its sides are of the same length.
 - No of the angle size or sides length conditions is sufficient alone!
- 4. Triangles with some vertices at the absolute:
 - AAA congruence does work for all triangles (even for non-compact ones).
 - SSS does not work for triangles with infinite sides!
 - All usual formula work when they make sense (i.e. when entries are finite).
- 5. (a) Show that any hyperbolic triangle have an inscribed circle.(b) Show that not every hyperbolic triangle has a circumscribed circle.
- 6. Constructions with hyperbolic ruler and circle:
 - midpoint of a segment;
 - perpendicular bisector;
 - angle bisector;
 - perpendicular through a given points A to a given line l;
 - centre of a given circle;
 - inscribed circle for a triangle;
 - circumscribed circle for a triangle (when exists)
 - tangent to a circle.

I don't know whether it is possible to construct:

- a common perpendicular to two given ultra-parallel lines.

if the ruler is of finite length.

Problems Class 8 (6 March 2017) Computations in the Klein model

- 1. Use the Klein model to prove that in a right-angled triangle with right angle γ holds:
 - (a) $\sinh a = \sinh c \sin \alpha$
 - (b) $\tanh b = \tanh c \cos \alpha$
 - (c) $\cosh c = \cosh a \cosh b$.
- 2. Use the Klein model to find the radius of the circle inscribed to the ideal triangle.
- 3. Let *l* be a hyperbolic line, *e* be an equidistant curve to that line. Let $M, N \in l$. Choose a point $A \in e$ and construct $B = e \cap AM$, $C = e \cap AN$.
 - (a) Show that the area of the triangle $\triangle ABC$ does not depend on the choice of $A \in e$.
 - (b) Formulate and show similar statements in Euclidean and spherical geometries.
 - (c) In Euclidean geometry, one can also state that the area of the triangle $\triangle AMN$ does not depend on the choice of A. Does similar statement hold in the hyperbolic case?