Durham University Anna Felikson Geometry 9.11.2018

Questions from Problems classes

Problems Class 1 (24 October 2018) Reflections on the plane, Geometric constructions

- 1. Example of using reflections to study compositions of isometries (write everything as a composition of reflections, make you choice so that some of them cancel!).
- 2. Example of using reflection to find a shortest way from a point A to a river and then to a point B on the same bank.
- 3. Ruler and compass constructions: perpendicular bisector, perpendicular from a point to a line, midpoint of a segment, angle bisector, inscribed and circumscribed circles for a triangle.

Problems Class 2 (7 November 2018) Group actions on \mathbb{E}^2

- 0. Let g_1, \ldots, g_n be isometries of \mathbb{E}^2 . Let $G = \langle g_1, \ldots, g_n \rangle$ be the group generated by g_1, \ldots, g_n (i.e. the minimal group containing all of g_1, \ldots, g_n). Show that the group G acts on \mathbb{E}^2 .
- 1. Let G be a group generated by two reflections on \mathbb{E}^2 . When G is discrete?
- 2. Let T be a triangle with angles $\frac{\pi}{2}, \frac{\pi}{4}, \frac{\pi}{4}$. Let r_1, r_2, r_3 be the reflection with respect to the sides of T, and let G be the group generated by r_1, r_2, r_3 . In the lecture we have checked that $G : \mathbb{E}^2$ discretely. Find the fundamental domain of this action.
- 3. Find the orbit-space for the action introduced in Question 2.
- 4. Let X be a regular triangle on \mathbb{E}^2 . Let r_1 and r_2 be two distinct reflections taking X to itself. Find the fundamental domain of the action G: X. Find also the orbit-space.
- 5. Let G be a group generated by rotation through angle $\frac{2\pi}{3}$ on the plane. Find the orbit-space of the action $G : \mathbb{E}^2$. Are there closed geodesics in this orbit-space? Are there bi-infinite open geodesics?

Problems Class 3 (21 November 2018) Some questions on the sphere S^2 and in affine geometry

- 1. Let T be a regular tetrahedron in \mathbb{E}^3 .
 - (a) Find the order of the group G := Isom(T) group of isometries of T.
 - (b) Let S^2 be a sphere circumscibed around T. Show that G acts on S^2 discretely.
 - (c) Find the fundamental domain for the action $G: S^2$.
- 2. Let S^2 be a sphere of radius R. Let α and β be two parallel planes crossing S^2 . Find the area of the part of S^2 lying between the planes α and β .
- 3. Let S^2 be a sphere of radius 1. Show that the length of a circle or (spherical) radius r equals to $2\pi \sin r$.

Remark: for the sphere of radius R, the length of the circle of radius r will be $2\pi R \sin(\frac{r}{R})$. When $R \to \infty$ we see that $\frac{r}{R} \to 0$ and, hence, $2\pi R \sin(\frac{r}{R}) \to 2\pi r$.

- 4. One can also discuss ruler and compass constructions, as in \mathbb{E}^2 .
- 5. Use affine geometry to show, that three medians of a triangle on \mathbb{E}^2 are concurrent.

Problems Class 4 (5 December 2018) Projective geometry

1. Find a projective transformation f which takes

$$A = (1:0:0) \text{ to } (0:0:1)$$

$$A = (0:1:0) \text{ to } (0:1:1)$$

$$A = (0:0:1) \text{ to } (1:0:1)$$

$$A = (1:1:1) \text{ to } (1:1:1)$$

Find the image of $X = AD \cap BC$ under this transformation.

- 2. Find [A, B, C, D] for the points above. (Does it exist?) For E = (1 : 1 : 0), F = (1 : 2 : 0) find [A, B, E, F].
- 3. Check explicitly, that the transformation f from Question 1 preserves the value of [A, B, E, F].
- 4. Let A_1, A_2, A_3, A_4 be points on a line a, let B_1, B_2, B_3, B_4 be points on a line b. Denote by p_i the line through A_i and B_i . Show that if the lines p_1, p_2, p_3, p_4 are concurrent, then the points $A_{i+1}B_i \cap A_iB_{i+1}$ (i = 1, 2, 3) are colliner.
- 5. Formulate and prove the statement dual to the one in Question 4.