## Models of hyperbolic geometry

| model                                    | Poincaré disk                                                   | Upper half-plane                                                               | Klein disk                                | two-sheet hyperboloid                                                                                                                                                                                                                                                                                                     |
|------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbb{H}^2$                           | $\{z\in\mathbb{C}\mid  z <1\}$                                  | $\{z\in\mathbb{C}\  \ Imz>0\}$                                                 | $\{z\in\mathbb{C}\  \  z <1\}$            | $\{v \in \mathbb{R}^{2,1} \mid (v,v) = -1, \ v_3 > 0\}$ where $(v,u) = v_1 u_1 + v_2 u_2 - v_3 u_3$                                                                                                                                                                                                                       |
| $\partial \mathbb{H}^2$ (absolute)       | $\{z\in\mathbb{C}\  \  z =1\}$                                  | $\{z\in\mathbb{C}\mid Imz=0\}$                                                 | $\{z\in\mathbb{C}\  \  z =1\}$            | $\{v \in \mathbb{R}^{2,1} \mid (v,v) = 0, \ v_3 > 0\}$ $v \sim \lambda v$                                                                                                                                                                                                                                                 |
| lines                                    | Y A B X                                                         | B A Y                                                                          | Y A B X                                   | $ \{v (v,a) = 0\} $ where $(a,a) > 0$                                                                                                                                                                                                                                                                                     |
| distance                                 | d(A,B) =  ln[A,B,X,Y] <br>X,Y = the "endpoints" of the line  AB |                                                                                | $d(A,B) = \frac{1}{2} ln[A,B,X,Y] $       | $d(A,B) = \frac{1}{2}  ln[A,B,X,Y] $ cross-ratio of four lines*                                                                                                                                                                                                                                                           |
| formula                                  |                                                                 | $ \cosh d(u, v) = 1 + \frac{ u - v ^2}{2Im(u)Im(v)} $                          |                                           | $Q = \left  \frac{(u,v)^2}{(u,u)(v,v)} \right $ if $(u,u) < 0$ , $(v,v) < 0$ $Q = \cosh^2 d(pt,pt)$ if $(u,u) < 0$ , $(v,v) > 0$ $Q = \sinh^2 d(pt,line)$ if $(u,u) > 0$ , $(v,v) > 0$ $Q < 1$ , intersecting lines $Q = \cos^2 \alpha$ $Q = 1$ , parallel lines $Q > 1$ , ultraparallel lines $Q = \cosh^2 d(line,line)$ |
| isometries**                             | Möbius transformations                                          |                                                                                | Projective tr                             | Linear transformations of $\mathbb{R}^{2,1}$                                                                                                                                                                                                                                                                              |
| orientation-<br>preserving<br>isometries |                                                                 | $az + b \over cz + d$ $a, b, c, d \in \mathbb{R}, \ ad - bc = 1$               |                                           |                                                                                                                                                                                                                                                                                                                           |
| orientation-<br>reversing<br>isometries  |                                                                 | $\frac{a\overline{z}+b}{c\overline{z}+d}$ $a,b,c,d \in \mathbb{R}, \ ad-bc=-1$ |                                           |                                                                                                                                                                                                                                                                                                                           |
| reflections                              | Euclidean inversions or reflections                             |                                                                                |                                           | $r_a(v) = v - 2\frac{(v,a)}{(a,a)}a$                                                                                                                                                                                                                                                                                      |
| circles                                  | Euclidean circles                                               |                                                                                | ellipses                                  | plane sections of the hyperboloid                                                                                                                                                                                                                                                                                         |
| angles                                   | angles=Euclidean angles                                         |                                                                                | distorted angles good for right angles*** |                                                                                                                                                                                                                                                                                                                           |

<sup>\*</sup> Cross-ratio of four lines lying in one plane and passing through one point is the cross-ratio of four points at which these lines are intersected by an arbitrary line l (it does not depend on l!).

<sup>\*\*</sup>We only list the type of the transformations not specifying that they preserve the model.

<sup>\*\*\*</sup> See the backside.

## \*\*\*Right angles in the Klein model.

Let l be a hyperbolic line.

Let  $\bar{l}$  be a Euclidean line containing the segment which represents l in the Klein model.

Let  $X_1(l)$  and  $X_2(l)$  be the endpoints of l (intersections of  $\bar{l}$  with the unit circle).

Let  $t_1(l)$  and  $t_2(l)$  be tangent lines to the unit circle at the points  $X_1(l)$  and  $X_2(l)$ .

Let  $T(l) = t_1(l) \cap t_2(l)$  (if  $t_1||t_2$ , i.e. l is represented by a diameter, then T(l) is a point at infinity).

**Thm.** l' is orthogonal to l if and only if  $T(l) \in l'$ .

In particular, if l is represented by a **diameter**, then  $l' \perp l$  if and only if  $\bar{l}' \perp \bar{l}$  (in Euclidean sinse).

