Models of hyperbolic geometry

model	Poincaré disk	Upper half-plane	Klein disk	two-sheet hyperboloid
\mathbb{H}^{2}	$\{z \in \mathbb{C}\|\|z\|<1\}$	$\{z \in \mathbb{C} \mid \operatorname{Imz}>0\}$	$\{z \in \mathbb{C}\|\|z\|<1\}$	$\begin{aligned} & \hline\left\{v \in \mathbb{R}^{2,1} \mid(v, v)=-1, v_{3}>0\right\} \\ & \text { where }(v, u)=v_{1} u_{1}+v_{2} u_{2}-v_{3} u_{3} \end{aligned}$
$\begin{gathered} \partial \mathbb{H}^{2} \\ \text { (absolute) } \\ \hline \end{gathered}$	$\{z \in \mathbb{C}\|\|z\|=1\}$	$\{z \in \mathbb{C} \mid \operatorname{Imz}=0\}$	$\{z \in \mathbb{C}\|\|z\|=1\}$	$\begin{aligned} \left\{v \in \mathbb{R}^{2,1} \mid\right. & \left.(v, v)=0, v_{3}>0\right\} \\ & v \sim \lambda v \end{aligned}$
lines				$\begin{aligned} & \{v \mid(v, a)=0\} \\ & \text { where }(a, a)>0 \end{aligned}$
distance	$d(A, B)=\|\ln [A, B, X, Y]\|$ $X, Y=$ the "endpoints" of the line $A B$		$\begin{aligned} & d(A, B)= \\ & \frac{1}{2}\|\ln [A, B, X, Y]\| \end{aligned}$	$d(A, B)=\frac{1}{2}\|\ln [A, B, X, Y]\|$ cross-ratio of four lines*
formula		$\begin{aligned} & \cosh d(u, v)= \\ & \quad 1+\frac{\|u-v\|^{2}}{2 \operatorname{Im}(u) \operatorname{Im}(v)} \end{aligned}$		$\begin{gathered} Q=\left\|\frac{(u, v)^{2}}{(u, u)(v, v)}\right\| \\ \text { if }(u, u)<0,(v, v)<0 \\ Q=\cosh ^{2} d(p t, p t) \\ \text { if }(u, u)<0,(v, v)>0 \\ Q=\sinh ^{2} d(p t, \text { line }) \\ \text { if }(u, u)>0,(v, v)>0 \\ Q<1, \text { intersecting lines } \\ Q=\cos ^{2} \alpha \\ Q=1, \text { parallel lines } \\ Q>1, \text { ultraparallel lines } \\ Q=\cosh ^{2} d(\text { line, } \text { line }) \end{gathered}$
isometries**	Möbius transformations		Projective tr	Linear transformations of $\mathbb{R}^{2,1}$
orientationpreserving isometries		$\begin{gathered} \frac{a z+b}{c z+d} \\ a, b, c, d \in \mathbb{R}, \quad a d-b c=1 \end{gathered}$		
orientationreversing isometries		$\begin{gathered} \frac{a \bar{z}+b}{c \bar{z}+d} \\ a, b, c, d \in \mathbb{R}, a d-b c=-1 \end{gathered}$		
reflections	Euclidean inversions or reflections			$r_{a}(v)=v-2 \frac{(v, a)}{(a, a)} a$
circles	Euclidean circles		ellipses	plane sections of the hyperboloid
angles	angles=Euclidean angles		distorted angles good for right angles***	

* Cross-ratio of four lines lying in one plane and passing through one point is the cross-ratio of four points at which these lines are intersected by an arbitrary line l (it does not depend on $l!$).
**We only list the type of the transformations not specifying that they preserve the model.
*** See the backside.

***Right angles in the Klein model.

Let l be a hyperbolic line.
Let \bar{l} be a Euclidean line containing the segment which represents l in the Klein model.
Let $X_{1}(l)$ and $X_{2}(l)$ be the endpoints of l (intersections of \bar{l} with the unit circle).
Let $t_{1}(l)$ and $t_{2}(l)$ be tangent lines to the unit circle at the points $X_{1}(l)$ and $X_{2}(l)$.
Let $T(l)=t_{1}(l) \cap t_{2}(l)$ (if $t_{1} \| t_{2}$, i.e. l is represented by a diameter, then $T(l)$ is a point at infinity).
Thm. l^{\prime} is orthogonal to l if and only if $T(l) \in l^{\prime}$.
In particular, if l is represented by a diameter, then $l^{\prime} \perp l$ if and only if $\bar{l}^{\prime} \perp \bar{l}$ (in Euclidean sinse).

