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1 Euclidean geometry

1.1 Isometry group of Euclidean plane, Isom(E2).

A distance on a space X is a function d : X ×X → R, (A,B) 7→ d(A,B) for A,B ∈ X satisfying
1. d(A,B) ≥ 0 (d(A,B) = 0⇔ A = B);
2. d(A,B) = d(B,A);
3. d(A,C) ≤ d(A,B) + d(B,C) (triangle inequality).

We will use two models of Euclidean plane:
a Cartesian plane: {(x, y) | x, y ∈ R} with the distance d(A1, A2) =

√
(x1 − x2)2 + (y1 − y2)2;

a Gaussian plane: {z | z ∈ C}, with the distance d(u, v) = |u− v|.
Definition 1.1. A Euclidean isometry is a distance-preserving transformation of E2,

i.e. a map f : E2 → E2 satisfying d(f(A), f(B)) = d(A,B).

Thm 1.2. (a) Every isometry of E2 is a one-to-one map.
(b) A composition of any two isometries is an isometry.
(c) Isometries of E2 form a group (denoted Isom(E2))

with composition as a group operation.

Example 1.3: Translation, rotation, reflection in a line, glide reflection are isometries.

Definition 1.4. Let ABC be a triangle labelled clock-wise. An isometry f is orientation-preserving
if the triangle f(A)f(B)f(C) is also labelled clock-wise.
Otherwise, f is orientation-reversing.

Proposition 1.5. (correctness of Definition 1.12)
Definition 1.4 does not depend on the choice of the triangle ABC.

Example 1.6. Translation and rotation are orientation-preserving,
reflection and glide reflection are orientation-reversing.

Remark 1.7. Composition of two orientation-preserving isometries is orientation-preserving;
composition of an or.-preserving isometry and an or.-reversing one is or.-reversing;
composition of two orientation-reversing isometries is orientation-preserving.

Proposition 1.8. Orientation-preserving isometries form a subgroup (denoted Isom+(E2)) of Isom(E2).

Theorem 1.9. Let ABC and A′B′C ′ be two congruent triangles.
Then there exists a unique isometry sending A to A′, B to B′ and C to C ′.

Corollary 1.10. Every isometry of E2 is a composition of at most 3 reflections.
(In particular, the group Isom(E2) is generated by reflections).

Remark: the way to write an isometry as a composition of reflections is not unique.

Example 1.11: rotation and translation as a composition of two reflections.
Glide reflection as a composition of a reflection in some line and
a translation along the same line (a composition of 3 reflections).

Theorem 1.12. (Classification of isometries of E2) Every non-trivial isometry of E2 is of one of the
following four types: reflection, rotation, translation, glide reflection.

Definition 1.13. Let f Isom(E2). Then the set of fixed points of f is Fixf = {x ∈ E2 | f(x) = x}.
Example 1.14: Fixed points of Id, reflection, rotation, translation and glide reflection are

E2, the line, a point, ∅, ∅ respectively.

Remark. Fixed points together with the property of preserving/reversing the orientation uniquely
determine the type of the isometry.

Proposition 1.15. Let f, g ∈ Isom(E2). (a) Fixgfg−1 = gF ixf ;
(b) gfg−1 is an isometry of the same type as f .
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1.2 Isometries and orthogonal transformations

Proposition 1.15a. A linear map f : x→ Ax, A ∈ GL(2,R) is an isometry if and only if A ∈ O(2),
orthogonal subgroup of GL(2,R) (i.e. iff ATA = I, where AT is A transposed).

Proposition 1.16. (a) Every isometry f of E2 may be written as f(x) = Ax + t.
(b) The linear part A does not depend on the choice of the origin.

Example 1.17. Orthogonal matrices for a reflection (in the vertical axis) and for a rotation.

Proposition 1.18. Let f(x) = Ax + t be an isometry.
f is orientation-preserving if detA = 1 and orientation-reversing if detA = −1.

Exercise 1.19. (a) Show that any two reflections are conjugate in Isom(E2).
(b) This is not the case for rotations, translations and glide reflections

(there are additional parameters in that cases).

Proposition 1.20. Geodesics on E2 are straight lines.

Problems class 1: a. Example of using reflections to study compositions of isometries (write
everything as a composition of reflections, make you choice so that some of them cancel!).
b. Example of using reflection to find a shortest way from a point A to a river and then to a point B
on the same bank.
c. Ruler and compass constructions: perpendicular bisector, perpendicular from a point to a line,
midpoint of a segment, angle bisector, inscribed and circumscribed circles for a triangle.

1.3 Discrete groups of isometries acting on E2

Definition 1.21. A group acts on the set X (denoted G : X) if
∀g ∈ G ∃fg, a bijection X → X, s.t. fgh(x) = (fg ◦ fh)(x),∀x ∈ X,∀g, h ∈ G.

Example 1.22. Action of Z on E2 (generated by one translation);
Isom(E2) act on points of E2, lines in E2, circles in E2, pentagons in E2.

Definition 1.23. An action G : X is transitive if ∀x1, x2 ∈ X ∃g ∈ G : fg(x1) = x2.

Example. Isom(E2) acts transitively on points in E2 and flags in E2

(a flag is a triple (p, r,H+) where p is a point, r is a ray starting from p,
and H+ is a choice of a half-plane with respect to the line containing the ray r);

Isom(E2) does not act transitively on the circles or triangles.

Definition 1.24. Let G : X be an action.
An orbit of x0 ∈ X under the action G : X is the set orb(x0) :=

⋃
g∈G

gx0.

Example 1.25. orbits of O(2) : E2 (circles and one point);
orbits of Z× Z : E2 acting by vertical and horizontal translations (shifts of the integer lattice).

Definition 1.26. An action G : X is discrete if none of its orbits possesses accumulation points,
i.e. given an orbit orb(x0), for every x ∈ X there exists a disc Dx centred at x
s.t. the intersection orb(x0) ∩Dx contains at most finitely many points.

Example. (a) The action Z× Z : E2 is discrete;
(b) the action of Z : E1 by multiplication is not discrete.
(c) Given an isosceles right angled triangle, one can generate a group G by reflections in

its three sides. Then G : E2 is a discrete action.

Definition 1.27. An open connected set F ⊂ X is a fundamental domain for an action G : X if
the sets gF, g ∈ G satisfy the following conditions:

1) X =
⋃
g∈G

gF (where U denotes the closure of U in X);

2) ∀g ∈ G, g 6= e, F ∩ gF = ∅;
3) There are only finitely many g ∈ G s.t. F ∩ gF 6= ∅.

Definition 1.28.
An orbit-space X/G for the discrete action G : X
is a set of orbits with a distance function dX/G = min

x̂∈orb(x), ŷ∈orb(y)
{dx(x̂, ŷ)}.

Example 1.29. Z : E1 acts by translations, E1/Z is a circle.
Z2 : E2 (generated by two non-collinear translations), E2/Z2 is a torus.
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1.4 3-dimensional Euclidean geometry

Model: Cartesian space (x1, x2, x3), xi ∈ R, with distance function

d(x, y) = (
3∑
i=1

(xi − yi)2)1/2 =
√

(x− y, x− y).

Properties: 1. For every plane α there exists a point A ∈ α and a point B /∈ α;
2. If two distinct planes α and β have a common point A

then they intersect by a line containing A.
3. Given two distinct lines l1 and l2 having a common point,

there exists a unique plane containing both l1 and l2.

Proposition 1.30. For every triple of non-collinear points
there exists a unique plane through these points.

Definition 1.31. A distance between a point A and a plane α is d(A,α) := min
X∈α

(d(A,X)).

Proposition 1.32. AX0 = d(A,α), X0 ∈ α iff AX0 ⊥ l for every l ∈ α, X0 ∈ l.
Corollary. A point X0 ∈ α closest to A /∈ α is unique.

Definition 1.33. (a) The point X0 ∈ α s.t. d(A,α) = AX0 is called an
orthogonal projection of A to α. Notation: X0 = projα(A).

(b) Let α be a plane, AB be a line, B ∈ α, and C = projα(A).
The angle between the line AB and the plane α is ∠(AB,α) = ∠ABC,

Equivalently, ∠(AB,α) = min
X∈α

(∠ABX).

Remark. Definition 1.31 (b) and Remark 1.32 imply that
if AC ⊥ α then AC ⊥ l for all l ∈ α, C ∈ l.

Definition 1.34. The angle ∠(α, β) between two intersecting planes αand β
is the angle between their normals.

Equivalently, if B ∈ β, A = projα(B), C = projl(A) where l = α ∩ β,
then ∠(α, β) = ∠BCA.

Exercise: 1. Check the equivalences.
2. Let γ be a plane through BCA. Check that γ ⊥ α, γ ⊥ β.

Proposition 1.35. Given two intersecting lines b and c in a plane α, A = b ∩ c, and a line a, A ∈ a,
if a ⊥ b and a ⊥ c then a ⊥ α (i.e. a ⊥ l for every l ∈ α).

Theorem 1.36. (Theorem of three perpendiculars). Let α be a plane, l ∈ α be a line and B /∈ α,
A ∈ α and C ∈ l be three points. If BA ⊥ α and AC ⊥ l then BC ⊥ l.

2 Spherical geometry

Geometry of the surface of the sphere.

Model of the sphere S2 in R3: (sphere of radius R = 1 centred at O = (0, 0, 0))

S2 = { (x1, x2, x3) ∈ R3 | x21 + x22 + x23 = 1}

2.1 Metric on S2

Definition 2.1. A great circle on S2 is the intersection of S2 with a plane passing though O.

Remark. Given two distinct non-geometrically opposed points A,B ∈ S2,
there exists a unique great circle through A and B.

Definition 2.2. A distance d(A,B) between the points A,B ∈ S2 is
πR, if A is diametrically opposed to B, and
the length of the shorter arc of the great circle through A and B, otherwise.

Equivalently, d(A,B) := ∠AOB ·R (with R = 1 for the case of unit sphere).

Theorem 2.4. The distance d(A,B) turns S2 into a metric space,
i.e. the following three properties hold:

M1. d(A,B) ≥ 0 (d(A,B) = 0⇔ A = B);
M2. d(A,B) = d(B,A);
M3. d(A,C) ≤ d(A,B) + d(B,C) (triangle inequality).

Remark. Need to prove only the triangle inequality, i.e. ∠AOC ≤ ∠AOB + ∠BOC.
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2.2 Geodesics on S2

Defin. A curve γ in a metric space X is a geodesic if γ is locally the shortest path between its points.
More precisely, γ(t) : (0, 1)→ X is geodesic
if ∀t0 ∈ (0, 1) ∃ε : l(γ(t)|t0+εt0−ε) = d(γ(t0 − ε), γ(t0 + ε)).

Theorem 2.5. Geodesics on S2 are great circles.

Definition 2.6. A geodesic γ : (−∞,∞)→ X (where X is a metric space) is called
closed if ∃T ∈ R : γ(t) = γ(t+ T ) ∀t ∈ (−∞,∞);
and open, otherwise.

Example. In E2, all geodesics are open, each segment is a shortest path.
In S2, all geodesics are closed, one of the two segments of γ \ {A,B} is the shortest path
(another one is not shortest if A and B are not antipodal).

From now on, by lines in S2 we mean great circles.

Proposition 2.7. Every line on S2 intersects every other line in exactly two antipodal points.

Definition 2.8. By the angle between two lines we mean an angle between the corresponding planes:

if li = αi ∩ S2, i = 1, 2 then ∠(l1, l2) := ∠(α1, α2).

Equivalently, ∠(l1, l2) is the angle between the lines l̂1 and l̂2, l̂i ∈ R3,

where l̂i is tangent to the great circle li at l1 ∩ l2 as to a circle in R3.

Proposition 2.9. For every line l and a point A ∈ l in this line
there exists a unique line l′ orthogonal to l and passing through A.

Proposition 2.10. For every line l and a point A /∈ l in this line, s.t. d(A, l) 6= π/2
there exists a unique line l′ orthogonal to l and passing through A.

Remark. Writing d(A, l) 6= π/2 we mean the spherical distance on the sphere of radius R = 1.

Definition 2.11. A triangle on S2 is a union of three points and
a triple of the shortest paths between them.

2.3 Polar correspondence

Definition 2.12. A pole to a line l = S2 ∩Πl is the pair of endpoints of the diameter DD′

orthogonal to Πl, i.e. Pol(l) = {D,D′}.
A polar to a pair of antipodal points D,D′ is the great circle l = S2 ∩Πl,

s.t. Πl is orthogonal to DD′, i.e. Pol(D) = Pol(D′) = l.

Property 2.13. If a line l contains a point A then the line Pol(A) contains both points of Pol(l).

Definition 2.14. A triangle A′B′C ′ is polar to ABC (A′B′C ′ = Pol(ABC)) if

A′ = Pol(BC) and ∠AOA′ ≤ π/2, and similar conditions hold for B′ and C ′.

Theorem 2.15. (Bipolar Theorem)
(a) If A′B′C ′ = Pol(ABC) then ABC = Pol(A′B′C ′).
(b) If A′B′C ′ = Pol(ABC) and 4ABC has angles α, β, γ and side lengths a, b, c, then
4A′B′C ′ has angles π − a, π − b, π − c and side lengths π − α, π − β, π − γ.

2.4 Congruence of spherical triangles

Theorem 2.16. SAS, ASA, and SSS hold for spherical triangles.

Theorem 2.17. AAA holds for spherical triangles.

2.5 Sine and cosine rules for the sphere

Theorem 2.18. (Sine rule) sin a
sinα = sin b

sin β = sin c
sin γ .

Remark. If a, b, c are small than a ≈ sin a and the spherical sine rule transforms into Euclidean one.

Corollary. (Thales Theorem) The base angles of the isosceles triangle are equal.

Theorem 2.19. (Cosine rule) cos c = cos a cos b+ sin a sin b cos γ.

Remark. If a, b, c are small than cos a ≈ 1− a2/2
and the spherical cosine rule transforms into Euclidean one.

Theorem 2.20. (Second cosine rule) cos γ = − cosα cosβ + sinα sinβ cos c.
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Remark. (a) If a, b, c are small than cos a ≈ 1 and the second cosine rule transforms to α+β+γ = π.

(b) For a right-angles triangle with γ = π/2,
sine rule: sin b = sin c · sinβ,

cosine rule: cos c = cos a cos b (Pythagorean Theorem).

2.6 Area of a spherical triangle

Theorem 2.21. The area of a spherical triangle with angles α, β, γ equals (α+ β + γ − π)R2,
where R is the radius of the sphere.

Corollary 2.22. π < α+ β + γ ≤ 3π,
(where the equality holds only if three vertices of the triangle lie on the same line).

Corollary 2.23. 0 < a+ b+ c ≤ 2π,
(where the equality holds only if three vertices of the triangle lie on the same line).

Corollary. There is no isometry from any small domain of S2 to a domain on E2

2.7 More about triangles

(1) In a spherical triangle,
(a) medians, (b) altitudes, (c) perpendicular bisectors, (d) angle bisectors are concurrent.

(2) For every spherical triangle there exists a unique circumscribed and a unique inscribed circles.

2.8 Isometries of the sphere

Example 2.25. Rotation, reflection and antipodal map.

Proposition 2.26. Every non-trivial isometry of S2 preserving two non-antipodal points A,B
is a reflection (with respect to the line AB).

Proposition 2.27. Given points A,B,C, satisfying AB = AC, there exists a reflection r such that
r(A) = A, r(B) = C, r(C) = B.

Example 2.28. Glide reflection, f = rl ◦RA,ϕ = RA,ϕ ◦ rl,
where rl is a reflection with respect to l and RA,ϕ is a rotation about A = Pol(l).

Theorem 2.29. 1. An isometry of S2 is uniquely determined by the images of 3 non-collinear points.
2. Isometries act transitively on points of S2 and on flags in S2.
3. The group Isom(S2) is generated by reflections.
4. Every isometry of S2 is a composition of at most 3 reflections.
5. Every orientation-preserving isometry is a rotation.
6. Every orientation-reversing isometry is either a reflection or a glide reflection.

Theorem 2.30. (a) Every two reflections are conjugate in Isom(S2).
(b) Rotations by the same angle are conjugate in Isom(S2).

Remark 2.31. Fixed points of isometries on S2 distinguish the types of isometries.

Remark 2.32. Isometries of S2 may be described by orthogonal matriaces 3× 3.
The subgroup of or.-preserving isometries is SO(3,R) = {A ∈M3|ATA = I, detA = 1}

Theorem 2.33. No domain on S2 is isometric to a domain on E2.

3 Affine geometry

We consider the same space R2 as in Euclidean geometry but with larger group acting on it.

3.1 Similarity group

Similarity group, Sim(R2) is a group generated by all Euclidean isometries and scalar multiplications:

(x1, x2) 7→ (kx1, kx2), k ∈ R.

Its elements may change size, but preserve the following properties:
angles, proportionality of all segments, parallelism, similarity of triangles.

Remark. A map which may be written as a scalar multiplication in some coordinates in R2 is called
homothety (with positive or negative coefficient depending on the sign of k).

Example 3.1. Using similarity to prove the following statement:
“A midline in a triangle is twice shorter than the corresponding side.”
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3.2 Affine geometry

Affine transformations are all transformations of the form f(x) = Ax + b where A ∈ GL(2,R).

Proposition 3.2. Affine transformations form a group.

Example 3.3. Affine map may be a similarity but may be not.

Affine transformations do not preserve length, angles, area.

Proposition 3.4. Affine transformations preserve
(1) collinearity of points;
(2) parallelism of lines;
(3) ratios of lengths on any line;
(4) concurrency of lines;
(5) ratio of areas of triangles (so ratios of all areas).

Proposition 3.5. (1) Affine transformations act transitively on triangles in R2.
(2) An affine transformation is uniquely determined by images of 3 non-collinear

points.

Example 3.6. Using the affine group to prove that the medians of Euclidean triangle are concurrent.

Theorem 3.7. Every bijection f : R2 → R2 preserving collinearity of points, betweenness
and parallelism is an affine map.

Remark. If f is a bijection R2 → R2 preserving collinearity,
then it preserves parallelism and betweenness.

Theorem 3.7’. (The fundamental theorem of affine geometry)
Every bijection f : R2 → R2 preserving collinearity of points is an affine map.

Corollary 3.8. If f : R2 → R2 is a bijection which takes circles to circles, then f is an affine map.
If f : R2 → R2 is a bijection which takes ellipses to ellipses, then f is an affine map.

4 Projective geometry

4.1 Projective line, RP1

Points of the projective line are lines though the origin O in R2.

Group action: GL(2,R) acts on R2 mapping a line though O to another line through O.

So, acts on RP2.

Homogeneous coordinates: a line though the O is determined by a pair of numbers (ξ1, ξ2), (ξ1, ξ2) 6=
(0, 0),
where pairs (ξ1, ξ2) and (λξ1, λξ2) determine the same line, so are considered equivalent.
The ratio (ξ1 : ξ2) determine the line and is called homogeneous coordinates of the corresponding

point in RP1.

The GL(2,R)-action in homogeneous coordinates writes as

A : (ξ1 : ξ2) 7→ (aξ1 + bξ2 : cξ1 + dξ2), where A =

(
a b
c d

)
,

and is called a projective transformation.

Remark. Projective transformations are called this way since they are compositions of projections
(of one line to another line from a point not lying on the union of that lines).

Lemma 4.1. Let points A2.B2, C2, D2 of a line l2 correspond to the points A1, B1, C1, D1 of the line
l1 under the projection from some point O /∈ l1 ∪ l2. Then C1A1

C1B1
/D1A1

D1B1
= C2A2

C2B2
/D2A2

D2B2
.

Definition 4.2. Let A,B,C,D be four points on a line l, and let a, b, c, d be their coordinates on l.
The value [A,B,C,D] := c−a

c−b /
d−a
d−b is called the cross-ratio of these points.

Lemma 4.1’. Projections preserve cross-ratios of points.

Definition 4.3. The cross-ratio of four lines lying in one plane and passing through one point
is the cross-ratio of the four points at which these lines intersect an arbitrary line l.

Remark. By Lemma 4.1’, Definition 4.3 does not depend on the choice of the line l.

Proposition 4.4. Any composition of projections is a liner-fractional map.

Proposition 4.5. A composition of projections preserving 3 points is an identity map.
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Lemma 4.6. Given A,B,C ∈ l and A′, B′, C ′ ∈ l′, there exists a composition of projections
which takes A,B,C to A′, B′, C ′.

Theorem 4.7. (a) The following two definitions of projective transformations of RP1 are equivalent:
(1) Projective transformations are compositions of projections;
(2) Projective transformations are linear-fractional transformations.

(b) A projective transformation of a line is determined by images of 3 points.

4.2 Projective plane, RP2

Model: Points of RP2 are lines through the origin O in R3.
Lines of RP2 are planes through O in R3.
Group action: GL(3,R) (acts on R3 mapping a line though O to another line through O).
Homogeneous coordinates: a line though theO is determined by a triple of numbers (ξ1, ξ2, ξ3),

where (ξ1, ξ2, ξ3) 6= (0, 0, 0);
triples (ξ1, ξ2, ξ3) and (λξ1, λξ2, λξ3) determine the same line,
so are considered equivalent.

Projective transformations in homogeneous coordinates:
A : (ξ1 : ξ2, ξ3) 7→ (a11ξ1+a12ξ2+a13 : a21ξ1+a22ξ2+a23ξ3 : a31ξ1+a32ξ2+a33ξ3),

where A = (aij) ∈ GL(3,R).

Remark. (1) A unique line passes through any given two points in RP2.
(2) Any two lines in RP2 intersect at a unique point.
(3) A plane through the origin in R3 may be written as a1x1 + a2x2 + a3x3 = 0.

This establishes duality between points and lines in RP2

(the point (a1, a2, a3) is dual to the plane a1x1 + a2x2 + a3x3 = 0).

Theorem 4.8. Projective transformations of RP2 preserve cross-ratio of 4 collinear points.

Definition. A triangle in RP2 is a triple of non-collinear points.

Proposition 4.9. All triangles of RP2 are equivalent under projective transformations.

Definition. 4.10. A quadrilateral in RP2 is a set of four points, no three of which are collinear.

Proposition 4.11. For any quadrilateral in RP2 there exists a unique projective transformation
which takes Q to a given quadrilateral Q′.

Proposition 4.12. A bijective map from RP2 to RP2 preserving projective lines is a projective map.

Corollary 4.13. A projection of a plane to another plane is a projective map.

Remark 4.14. (Conic sections).
Quadrics, i.e. the curves of second order on R2 (ellipse, parabola and hyperbola)
may be obtained as conic sections (sections of a round cone by a plane).
All of them are equivalent under projective transformations.

4.3 Hyperbolic geometry: Klein model

Model: in interior of unit disc.
• points - points; • lines - chords • distance: d(A,B) = 1

2

∣∣ln|[A,B,X, Y ]|
∣∣

where X,Y are the endpoints of the chord through AB and [A,B,X, Y ] is the cross-ratio.

Remark: 1. Axioms of Euclidean geometry are satisfied (except for Parallel Axiom).
2. Parallel axiom is obviously not satisfied:

Given a line l and a point A /∈ l, there are infinitely many lines l′ s.t. A ∈ l and l∩l′ = ∅.
Theorem 4.15. The function d(A,B) satisfies axioms of distance, i.e.

1) d(A,B) ≥ 0 and d(A,B) = 0⇔ A = B;
2) d(A,B) = d(B,A)
3) d(A,B) + d(B,C) ≥ d(A,C).

Isometries of Klein model

Theorem 4.16. There exists a projective transformation of the plane that
- maps a given disc to itself,
- preserves cross-ratios of collinear points;
- maps the centre of the disc to an arbitrary inner point.
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Corollary 4.17. Isometries act transitively on the points of Klein model.
Isometries act transitively on the flags in Klein model.

Remark. 1. In general, angles in Klein model are not represented by Euclidean angles.
2. Angles at the centre are Euclidean angles.
3. Right angles are shown nicely in the Klein model.

Proposition 4.18. Let l and l′ be two lines in the Klein model.
Let t1 and t2 be tangent lines to the disc at the endpoints of l.
Then l ⊥ l′ ⇔ t1 ∩ t2 ∈ l′.

Pairs of lines in hyperbolic geometry: two lines in hyperbolic geometry are called
intersecting if they have a common point inside hyperbolic plane;
parallel if they have a common point on the boundary of hyperbolic plane;
divergent or ultra-parallel otherwise.

Proposition-Exercise. Any pair of divergent lines has a unique common perpendicular.

4.4 Some classical theorems on projective plane

Remark on projective duality: point A = (a1 : a2 : a3) ←→ line lA : a1x1 + a2x2 + a3x3 = 0
A ∈ lB ←→ B ∈ lA

line through A,B ←→ point of intersection: lA ∩ lB
3 collinear points ←→ 3 concurrent lines

... ←→ ...

Proposition 4.19. (On dual correspondence) The interchange of words “point” and “line”
in any statement about configuration of points and lines related by incidence
does not affect validity of the statement.

Theorem 4.20. (Pappus’ theorem). Let a and b be lines, A1, A2, A3 ∈ a, B1, B2, B3 ∈ b.
Let P3 = B1A2∩A1B2, P2 = B1A3∩A1B3, P1 = B3A2∩A3B2.
Then the points P1, P2, P3 are collinear.

Remark 4.21. (Dual statement to Pappus’ theorem)
Let A and B be points and a1, a2, a3 be lines through A, b1, b2, b3 be lines through B.
Let p1 be a line through b2 ∩ a3 and a2 ∩ b3,

p2 be a line through b1 ∩ a3 and a1 ∩ b3,
p3 be a line through b2 ∩ a1 and a2 ∩ b1.

Then the lines p1, p2, p3 be concurrent.
[This is actually the same statement as Pappus’ theorem.]

Remark 4.22. Pappus’ theorem is a special case of Pascal’s Theorem:
If A,B,C,D,E, F lie on a conic then the points AB ∩DE, BC ∩EF , CD ∩ FA are collinear.

[Without proof.]

Theorem 4.23. (Deasargues’ theorem). Suppose that the lines joining the corresponding vertices
of triangles A1A2A3 and B1B2B3 intersect at one point S.
Then the intersection points P1 = A2A3 ∩B2B3,
P2 = A1A3 ∩B1B3, P3 = A1A2 ∩B1B2 are collinear.

4.5 Topology and metric of RP2

Remark 4.24: topology of the projective plane (contains Möbius band, non-orientable, one-sided).

Remark 4.25: Metric on the projective plane: locally isometric to S2;
not preserved by projective transformations, so, irrelevant for projective geometry.

Geometry of RP2 with spherical metric (and a group of isometries acting on the space)
is called elliptic geometry and has the following properties:

1. A unique line passes through any two distinct points;
2. Any two lines intersect in a unique point;
3. Given a line l and a point A (not a pole of l),

there exists a unique line l′ s.t. A ∈ l and l′ ⊥ l.
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4.6 Polarity on RP2 (Non-examinable section!)

Consider a trace of a cone C = {(x, y, z) ∈ R3 | x2 + y2 = z2} on the projective plane RP2 - a conic.

Definition. Points A = (a1, a2, a3) and B = (b1, b2, b3) of RP2 are called polar with respect to C
if a1b1 + a2b2 = a3b3.

Example: points of C are self-polar.

Definition. Given a point A ∈ RP2, the set of all points X polar A is the line a1x1 +a2x2−a3x3 = 0,
it is called the polar line of A.

How to find the polar line:

Lemma 4.26. A tangent line to C at a point B = (b1, b2, b3) is x1b1 + x2b2 = x3b3.

Proposition 4.27. Let A be a point “outside” C,
let lB and lC be tangents to C at B and C, s.t. A = lB ∩ lC .
Then BC is the line polar to A.

Proposition 4.28. If A ∈ C then the tangent lA at A is the polar line to A.

Proposition 4.29. Let A be a point “inside” the conic C. Let b and c be two lines through A. Let
B and C be the points polar to the lines b and c. Then BC is the line polar to A with respect to C.

Remark 4.30. 1. Polarity generalize the notion of orthogonality.
2. More generally, for a conic C = {x ∈ R3 | xTAx = 0}, where A is a symmetric 3× 3 matrix,

the point a is polar to the point b if aTAb = 0.
3. We worked with a diagonal matrix A = diag{1, 1,−1}.
4. If we take an identity diagonal matrix A = diag{1, 1, 1} we get an empty conic x2+y2+z2 = 0,

which gives exactly the same notion of polarity as we had on S2.
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