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Solutions 5-6

5.1 A circle CA,r of radius r centred at A is the set of points on distance r from A.
Show that any spherical circle on a sphere S = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} is represented
by a Euclidean circle.

Solution. Let B be any point on CA,r. Then ∠AOB = r. Let H be the orthogonal projection
of B to the line AO. Then |OH| = cos r does not depend on B (depending only on r), which
implies that the spherical circle CA,r lies in the Euclidean plane Π passing through H and
orthogonal to OA. Moreover, |HB| = sin r, so, the points of CA,r form a Euclidean circle in the
Euclidean plane Π.

5.2 (*) Prove that in a spherical triangle (a) the perpendicular bisectors are concurrent;
(b) the angle bisectors are concurrent.

Solution. (a) A perpendicular bisector of AB is a locus of points on the same distance from
A and B. Let Q be an intersection point of the perpendicular bisectors of AB and BC (exists
as every pair of lines on the sphere intersects). Then Q lies on the same distance from A and
B, but also it lies on the same distance from B and C. So, we conclude that it lies on the
same distance from A and C, which implies that the perpendicular bisector for AC also passes
through Q.

(b) An angle bisector is a locus of points on the same distance from the rays forming the angle.
So, we can repeat the reasoning of the case (a): an intersection point of two angle bisectors lies
on the same distance from all the sides of the triangle, so lies on all three angle bisectors.

5.3 Given SAS congruence law for spherical triangles, derive the ASA law.

Solution. Let A1B1C1 and A2B2C2 be two spherical triangles and A′1B
′
1C
′
1 and A′2B

′
2C
′
2 be

their polar triangles. Suppose that A1B1 = A2B2, ∠A1B1C1 = ∠A2B2C2 and B1C1 = B2C2.

Recall that, given a triangle with angles (α, β, γ) and sidelengths (a, b, c), the polar triangle
has angles (π − a, π − b, π − c) and sidelengths (π − α, π − beta, π − γ). This implies that
∠A′1C

′
1B
′
1 = ∠A′2C

′
2B
′
2 , A′1C

′
1 = A′2C

′
2 and ∠B′1A

′
1C
′
1 = ∠B′2A

′
2C
′
2. By ASA law of confgruence

of triangles this implies that the triangle A′1B
′
1C
′
1 is congruent to the triangle A′2B

′
2C
′
2, i.e. that

all the angles and sidelengths of A′1B
′
1C
′
1 are equal to the respective angles and sidelengths of

A′2B
′
2C
′
2.

Now, apply the polar correspondence again. By the bipolar theorem the triangles A1B1C1

and A2B2C2 are polar to the triangles A1B1C1 and A2B2C2. This implies that all angles and
sidelengths of A1B1C1 are equal to the respective elements of A2B2C2. Hence, A1B1C1 is
congruent to A2B2C2.

5.4 (*) A self-polar triangle is a triangle polar to itself.

(a) Show that a self-polar triangle does exist.

(b) Show that all self-polar triangles are congruent.

Solution. (a) Consider a triangle ABC with angles (π2 ,
π
2 ,

π
2 ) and sidelengths (π2 ,

π
2 ,

π
2 ). Clearly,

A is a polar point to the spherical line BC (contained in the same hemisphere as A). Similar
properties hold for B and C. So ABC is self-polar.

To see that such a triangle exists, we can take two points B and C on distance π/2 and the
point A = Pol(BC) polar to the line BC. Another way to construct this triangle will be to use
coordinates: points (1, 0, 0), (0, 1, 0) and (0, 0, 1) work nicely for A,B,C.
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(b) Let ABC be a self-polar triangle. Then by definition of the polar triangle A is a polar
point to the spherical line BC (contained in the same hemisphere as A). This implies that
|AB| = |AC| = π

2 . Similar consideration for the vertex B shows BC = BA = π
2 .

So, all sidelengths of a self-polar triangle are π
2 . By SSS theorem of congruence of triangles this

implies that all self-polar triangles are congruent.

5.5 On the planet Polaris the whole polar to each point of the dry land lies in the ocean.

(a) How many continents may be on the Polaris if every continent is a disc?
Here by a disc centred at p0 of radius r we mean the set {p ∈ S2 | d(p, p0) < r}.
Is the number of continent bounded? Can it be odd?

(b) Is it possible that the whole polar to each point of the ocean belongs to the dry land?

Solution. (a) Let CN (r) be a continent of radius r centred at the north pole. Then the poles
of the points in this continent sweep the belt around the equator (more precisely, it is the set
of all points lying on distance r or close to the equator). We need to place several continents so
that the corresponding belts never intersect other continents. To do that we can take 2(2n+ 1)
points on the equator, lying on equal distances from each other. Notice that the polars to that
points never pass through other points in the family (as there are even number of them at each
half-circle). Now, if we will take r small enough and will replace each points by a disc of radius
r, then the polar circles (where we are forbidden to place other continents) will be replaced by
the belts (thin enough not to intersect any continent).

So, we can have as many continents as we want. We can also remove one continent from the
picture without breaking any rules of the game - so, we will be able to obtain any number of
continents (including the odd numbers).

(b) Let the North pole N be covered by some continent. Them the whole equator should lie in
the ocean. Take a point A in the equator. Then the polar to A contains intersects the equator
(as any two lines in the sphere do intersect), and so, can not consist entirely of the points in dry
land.

5.6 Prove the formulas for a spherical triangle with right angle γ:

(a) tan a = tanα sin b (b) tan a = tan c cosβ.

Solution.

(a) By the sine law we have sin a = sinα sin b/ sinβ, which implies

tan a =
sin a

cos a
=

1

cos a

sinα sin b

sinβ
=

sinα

cosα

cosα

cos a

sin b

sinβ
= tanα sin b

cosα

cos a sinβ
.

Now, we are left to check that cosα = cos a sinβ, but this follows immediately from the second
cosine law

cosα = − cosβ cos γ + sinβ sin γ cos a

and the assumption that γ = π/2.

(b) By the sine law we have sin a = sinα sin c/ sin γ, which implies

tana =
sin a

cos a
=

1

cos a

sin c sinα

sin γ
=

sin c

cos c

cos c sinα

cos a · 1
= tan c

cos a cos b sinα

cos a
=

= tan c cos b sinα = tan c cosβ

In the fourth equality we use the cosine law for a right-angled triangle cos c = cos a cos b. The
last equality uses cos b sinα = cosβ which immediately follows from the second cosine law

cosβ = − cosα cos γ + sinα sin γ cos b.
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5.7 Let T be a spherical triangle with three right angles. Let r and R be the radii of the inscribed
and superscribed circles for T . Find the ratio sinR/ sin r.

Solution. Consider three angle bisectors of T : they meet at a point (denote it O), and since T is
regular, they are also orthogonal to the sides and pass through the midpoints of the corresponding
sides. Moreover, the bisectors decompose T into 6 congruent triangles with angles π

2 ,
π
3 ,

π
4 (all

six triangles meet in the centre O, so that the angle of each of them at O is π
3 ).

So, R is the largest side of this triangle (the one opposite to the right angle), and r is the smallest
side (opposite to the angle π

4 ). By the sine law we have

sinR

sin π
2

=
sin r

sin π
4

,

so, sinR
sin r = 1/

√
2
2 =

√
2.

5.8 (*) For a spherical triangle with angles π
2 ,

π
4 ,

2π
3 on the unit sphere find the length of the side

opposite to the angle 2π
3 .

Solution. Applying the second law of cosines

cosα = − cosβ cos γ + sinβ sin γ cos a

to the triangle with angles π
2 ,

π
4 ,

2π
3 we get

cos
2π

3
= − cos

π

2
cos

π

4
+ sin

π

2
sin

π

4
cos a.

Since cos π2 = 0, sin π
2 = 1, cos 2π

3 = − 1
2 and sin π

4 =
√
2
2 we have

−1

2
=

√
2

2
cos a.

Thus, cos a = (− 1
2 )/(

√
2
2 ) = − 1√

2
= −

√
2
2 .

Hence, a = 3π
4 .

5.9 (a) Given a spherical line segment of length α, prove that the polars of all spherical lines
intersecting this segment sweep out a set of area 4α.

(b) Given several spherical line segments whose sum of lengths is less than π, prove that there
exists a spherical line disjoint from each.

Solution. (a) The polars to the points in α sweep two digons, each of angle α. As the area of
the digon of angle α is 2α, the statement follows.

(b) Consider the union U of the polars to all points in all the line segments we are given. From
(a) it follows that the area of U is less than 4π, which implies that there is a point A in the
sphere not lying in the set U . Let l be a line polar to A. We want to prove that l is disjoint
from all the line segments we started from.

Let B ∈ l be a point. If B belongs to some of the initial segments, then A belongs to its polar,
and hence, A ∈ U . This contradicts to the assumption. So B does not belong to any of the
initial segments. As B was any point in l, l is disjoint from the initial segments.

6.1 (a) Find the area of a spherical triangle with angles π
2 ,

π
3 and π

3 . Which part of the area of the
whole sphere does it make?

(b) The same question for the triangle with angles π
2 ,

π
3 and π

4 .

Solution. (a) Without loss of generality we may assume that the radius of the sphere is 1.
Then the area of a spherical triangle with angles α, β, γ is S(α,β,γ) = α+ β + γ − π.

So, S(π
2 ,

π
3 ,

π
3 ) = π

2 + π
3 + π

3 − π = π
6 .

The area S of the whole unit sphere is 4π, hence, S(π
2 ,

π
3 ,

π
3 ) is 1

24 part of the area of the sphere.
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(b) One can compute in the same way as in (a). Another possibility is to notice that the
triangle with angles (π2 ,

π
3 ,

π
3 ) may be decomposed into two triangles with angles (π2 ,

π
3 ,

π
4 ). So,

S(π
2 ,

π
3 ,

π
4 ) = 1

2S(π
2 ,

π
3 ,

π
3 ) = π

12 , which is 1
48 part of the area of the sphere.

6.2 (a) Find the area of a spherical quadrilateral with angles α, β, γ, δ.

(b) Given angles of a spherical n-gone, find its area.

Solution. (a) A diagonal decomposes a quadrilateral into two triangles. The area of each
triangle is its sum of angles minus π. So, the area of the quadrilateral equals to the sum of
angles of two triangles minus 2π. Since the sum of angles of two triangles is equal to the sum of
angles of the quadrilateral, we get

Squadrilateral = α+ β + γ + δ − 2π.

(b) Choose a vertex A of the n-gon. The diagonals incident to A decompose the n-gon into n−2
triangles, whose total sum of angles equals to the sum of angles of the n-gon. Hence, the area
of the n-gon with angles α1, . . . , αn is

Sn−gon =

n∑
i=1

αi − (n− 2)π.

6.3 Let Ant : S2 → S2 be the antipodal map (which takes every point of the sphere to its antipodal).
Write Ant as a composition of reflections.

Solution. One way to do that is to take the regular triangle T with three right angles and
consider a composition ϕ of three reflections with respect to its sides. It is straightforward to
check that this composition takes the vertices of T to their antipodes. As the images of three
points completely define the isometry of the sphere, ϕ takes every point of the sphere to its
antipode.

6.4 Show that the group Isom+(S2) of orientation-preserving isometries of the sphere is generated
by rotations by angle π.

Solution. As all orientation-preserving isometries of S2 are rotations, we only need to show
that every rotation is a composition of rotations by π. Let RN,α be a rotation about the North
pole N by the angle α. It is a composition of two reflections r2 ◦ r1 with respect to two lines l1
and l2 passing through N and forming an angle α/2. Let r3 be the reflection with respect the
equator. Then

RN,α = r2 ◦ r1 = r2 ◦ (r3 ◦ r3) ◦ r1 = (r2 ◦ r3) ◦ (r3 ◦ r1).

As the equator is orthogonal to both l1 and l2, the isometries r2 ◦ r3 and r3 ◦ r1 are actually
rotations by π.

6.5 (*) Prove that (a) the medians and (b) the altitudes of a spherical triangle are concurrent.

Solution: The idea of the solution is the same for the case of medians and altitudes. We will
use a projection p from the centre O of the sphere to some plane, such that a spherical triangle
will be mapped to a Euclidean triangle and the medians (altitudes) of the sperical triangle will
be mapped to the medians (respectively, altitudes) of the Euclidean triangle. As the medians
(respectively altitudes) of a Euclidean triangle are concurrent (see E17, E21) at some point X,
we conclude that the medians (altitudes) of a spherical triangle are concurrent at the point
which projects to X.

(a) Let ABC be a spherical triangle and pet p be a projection of the sphere from the center of
the sphere to the plane ABC. It is sufficient to show that this projection takes a median of a
spherical triangle to the median of the corresponding Euclidean triangle.

To prove this, let M be a midpoint of AB on the sphere and M ′ = p(M) = MO ∩ AB be its
projection to ABC. Then ∠MOA = ∠MOB and hence ∠M ′OA = ∠M ′OB, the later implies
that the (Euclidean) triangles M ′OA and M ′OB are congruent by SAS (OB = OA is the radius
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of the sphere and AM ′ is the common side). Hence M ′A = M ′B, so that M ′ is the (Euclidean)
midpoint of AB. So, the projection of the spherical midpoint of AB is the Euclidean midpoint,
and hence, the projection takes a spherical median to a Euclidean one.

(b) First, suppose that the spherical triangle ABC has two (or more) right angles, ∠A = ∠B =
π
2 . Then the altitude from C is not uniquely determined (more precisely, every line through
C is orthogonal to AB). It is clear that in this case the altitudes of ABC are not necessirily
concurrent.

Suppose now that the spherical triangle ABC has at most one right angle. Then each of the three
altitudes of ABC is uniquely determined (by the conditions that it passes through a vertex and
is orthogonal to a side). Below we prove that in this case the altitudes of ABC are concurrent.

The idea is the same as for the case of medians, however, we will use another projection.

Let ΠC be a plane in E3 tangent to the sphere at the point C. Let pC be a projection of the
sphere to the plane ΠC from the centre O of the sphere. It is clear that pC takes segments of
spherical lines to segments of Euclidean lines (obtained as intersection of the plane ΠC with
the corresponding plane through O). Let ABC be a spherical triangle (with at most one right
angle) and let A′B′C = pC(ABC). We need to prove that pC takes all altitudes of the spherical
triangle ABC to the altitudes of the Euclidean triangle A′B′C. Notice that each of the three
pairs (side of ABC, corresponding altitude) contains a line through C (it is a side for sides AC
and BC and an altitude for the side AB). So, the required statement follows immediately from
the next claim:

Claim: Let ΠC be a plane in E3 tangent to the sphere at the point C.
Let α be a plane, O,C ∈ α and let β be any plane through O orthogonal to α.
Let lα = ΠC ∩ α and lβ = ΠC ∩ β be non-empty. Then lα is orthogonal to lβ.

Proof of the claim. Let vα be a normal vector to the plane α. Then each plane Π orthogonal
to α contains a line parallel to vα. Moreover, there exists such a line (parallel to vα and
lying in Π) through every point in Π. In particular, this holds for each of the planes Πc and
β (as both of them are orthogonal to α). Let Q be a point in lβ = ΠC ∩ β. Then the line
through Q parallel to vα lies both in ΠC and β, so this line coincides with the intersection
line lβ . Since vα is orthogonal to α, it is orthogonal to every line in α, in particular, to lα.
This implies that lβ is orthogonal to lα.

Remark 1. Were does this proof fails for the triangles with 2 right angles? Is the projection
pC of ABC always well defined?

Remark 2. As the solution both for medians and altitudes refers to the corresponding Euclidean
theorems, it looks reasonable to refresh/to learn the proofs of the Euclidean theorems. For
example, one can find the proofs on the cut-the-knot.

6.6 Given a spherical triangle ABC and the midpoints M and N on the sides AB and AC respec-
tively, show that MN > BC/2.

Solution: Let AN = b, AM = c, MN = a and CB = d (note that we choose a bit non-standard
notation here to avoid working with half-distances).

We need to show that MN > BC/2, or equivalently that d < 2a, which is equivalent to
that cos d > cos(2a). It is sufficient to check that cos d − 2 cos2 a + 1 > 0 (here we use that
cos(2a) = 2 cos2 a− 1).

We will use the first cosine rule applied to triangles AMN and ABC to compute a and d
respectively:

cos d− 2 cos2 a+ 1 > 0 =

(cos(2b) cos(2c) + sin(2b) sin(2c) cosα)− 2(cos b cos c+ sin b sin c cosα)2 + 1 =

(2 cos2 b− 1)(2 cos2 c− 1) + 4 cos b cos c sin b sin c cosα−
2(cos2 b cos2 c+ 2 cos b cos c sin b sin c cosα+ sin2 b sin2 c cos2 α) + 1 =

2(cos2 b cos2 c− cos2 b− cos2 c+ 1− sin2 b sin2 c cos2 α) >

2(cos2 b cos2 c− cos2 b− cos2 c+ 1− sin2 b sin2 c) =

2((cos2 b− 1)(cos2 c− 1)− sin2 b sin2 c) = 0.
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