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Solutions 15-16

15.1. (*)

(a) Let P and Q be feet of the altitudes in an ideal hyperbolic triangle. Find PQ.

(b) Find the radius of a circle inscribed into an ideal hyperbolic triangle.

(c) Show that a radius of a circle inscribed into a hyperbolic triangle does not exceed arcosh(2/
√
3).

Solution.

(a) We will compute in the upper half-plane model. Let X = 0, Y = 1, Z = ∞ (we can assume
that as all ideal triangles are congruent). By symmetry reasons, we can also assume that P
and Q lie on XZ and Y Z respectively. The (hyperbolic) line through Y orthogonal to XZ is
represented by an arc of the unit circle, so P = i. Similarly, Q = i+ 1. Hence,

cosh d(P,Q) = 1 +
1

2 · 1 · 1
=

3

2

and d(P,Q) = arcosh( 32 ).

(b) The incentre I of the ideal triangle is the intersection of three altitudes (this is especially clear
if we place the ideal triangle in the Poincaré disc so that the vertices form a regular Euclidean
triangle). One of the altitudes is the unit circle, another is the line x = 1/2. So, I = eiπ/3.
The required radius r is the distance from I to (any) foot of an altitude, say to R = (1+ i)/2.
Hence,

cosh r = 1 +
(
√
3
2 − 1

2 )
2

2 · 1
2 ·

√
3
2

= 1 +
3− 2

√
3 + 1

2
√
3

=
2√
3

and r = arcosh( 2√
3
).

(c) We will show that any triangle ABC may be enclosed into some ideal triangle. Notice that
the incircle is the largest circle sitting inside the given triangle. So, the radius of the incircle of
ABC does not exceed the radius of the incircle of the ideal triangle (which is arcosh(2/

√
3),

as computed in (b)).

Let X,Y ∈ ∂H2 be the endpoints of the line AB, and let Z ∈ ∂H2 be the second endpoint of
the line XC. Then ABC lies inside the ideal triangle XY Z. This implies that the inscribed
circle of ABC lies inside the ideal triangle.

15.2. For a right hyperbolic triangle (γ = π
2 ) show:

(a) tanh b = tanh c cosα, (b) sinh a = sinh c sinα.

Solution. We will use the same notation as in the proof of Theorem 6.21 (Pythagorean Theorem),

see Fig. 1. Also, we will use the values cosh b = 1+k2

2k and cosh c = 1+k2

2k sinφ computed in the proof of
Theorem 6.21.

First, we show

sin2 α =
4k2 cos2 φ

(k + 1)2 − 4k2 sin2 φ
=

4k2 cos2 φ

(k2 − 1)2 + 4k2 cos2 φ
. (1)

Let X = (x0, 0) be the (Euclidean) centre of the (Euclidean) circle representing the hyperbolic line
AB. Then α = ∠AXO (as XA is a radius, so is orthogonal to the circle and the horizontal line
XO is orthogonal to the vertical line AC). So,

sin2 α = sin2 ∠AXO =
k2

k2 + x2
0

.
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Figure 1: Notation for Quesion 15.2.

To find x0, notice that XA = XB (as X is the centre of the circle), which implies

x2
0 + k2 = (cos2 φ− x0)

2 + sin2 φ ⇔ k2 = 1− 2x0 cosφ,

i.e.

x0 =
1− k2

2 cosφ
.

Hence,

sin2 α = sin2 ∠AXO =
k2

k2 + x2
0

=
k2

k2 − ( k2−1
2 cosφ )

2
=

4k2 cos2 φ

(k2 − 1)2 + 4k2 cos2 φ
=

4k2 cos2 φ

(k2 + 1)2 − 4k2 + 4k2 cos2 φ
=

4k2 cos2 φ

(k2 + 1)2 − 4k2 sin2 φ

(a) Using the expressions for cosh b and cosh c we get respectively

tanh2 b =
sinh2 b

cosh2 b
=

cosh2 b− 1

cosh2 b
= 1− 1

cosh2 b
= 1− 4k2

(1 + k2)
=

(
1− k2

1 + k2

)2

and

tanh2 c = 1− 1

cosh2 c
= 1− 4k2 sin2 φ

(1 + k2)2
=

(1− k2)2 + 4k2 cos2 φ

(1 + k2)2
.

On the other hand,

cos2 α = 1− sin2 α = 1− 4k2 cos2 φ

(k2 − 1)2 + 4k2 cos2 φ
=

(k2 − 1)2

(k2 − 1)2 + 4k2 cos2 φ
,

which clearly satisfies the required identity tanh2 b = tanh2 c cos2 α.

(b) Similarly, using the expressions for cosh a and cosh c we get respectively

sinh2 a = cosh2 a− 1 =
1

sin2 φ
− 1 =

cos2 φ

sin2 φ

and

sinh2 c = cosh2 c− 1 = (
1 + k2

2k sinφ
)2 − 1 =

(k2 + 1)2 − 4k2 sin2 φ

4k2 sin2 φ
.

Hence, comparing to (1), we get sinh a = sinh c sinα.
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15.3. Show that in the upper half-plane model the following distance formula holds:

2 sinh2
d

2
=

|z − w|2

2Im(z)Im(w)

Solution. sinh2 d
2 = ( e

d/2+e−d/2

2 )2 = ed+e−d−2
4 = 1

2 (cosh d− 1) = 1
2

|z−w|2
2Im(z)Im(w) .

15.4. Find an area of a right-angled hyperbolic pentagon.

Solution. Subdividing the pentagon into 3 triangles, we see that S = 3π − 5π
2 = π

2 .

15.5. In the upper half-plane model, find the locus of points z lying on distance d from the line 0∞.

Solution. Consider the isometry z → kz, for k > 0 of the upper half-plane model. Let z0 be a
point on distance d from 0∞. Then every point kz0 lies on the same distance from 0∞. So, we get
a (Euclidean) ray lying in the locus. Now, applying reflection with respect to the imaginary axis
z → −z̄, we see that the locus contains also all points on another Euclidean ray −kz̄0.

Let us prove now that the locus contained no other points except the two rays described above.
The distance from a point A to a line l is the length of the segment AH perpendicular to l, H ∈ l.
Clearly, each line perpendicular to l contains exactly two points on the given distance d from l (one
point in each half-plane). All lines perpendicular to 0∞ are represented by circles centred in 0, and
each of them intersects each of the two rays. So, there are no other points in the locus.

16.1. In the Klein disc model draw two parallel lines, two ultra-parallel lines, an ideal triangle, a triangle
with angles (0, π

2 ,
π
3 ).

Solution.

16.2. (*) Show that three altitudes of a hyperbolic triangle either have a common point or are pairwise
parallel or there is a unique line orthogonal to all three altitudes.

Solution. Without loss of generality we may assume that A is the centre of the Klein disc and

B and C are any two other points in H2
Let AHa, BHb and CHc be the (Euclidean) altitudes

of the Euclidean triangle with vertices A,B,C. Then AHa, BHb and CHc are also (hyperbolic)
altitudes of hyperbolic triangle ABC. Indeed, AHa ⊥ BC since AHa lie on a diameter of the disc,
BHb ⊥ AC and CHc ⊥ AB since AC and AB lie on the diameters of the disc.

Being altitudes of a Euclidean triangle, the lines AHa, BHb and CHc have a common point T ,
however, T does not necessarily belongs to the disc. If T lies in the disc, the altitudes of ABC
have a common point. If T lies on the boundary of the disc then the altitudes of ABC are pairwise
parallel. If T lies outside the disc then there exists a unique (hyperbolic) line l orthogonal to all
three altitudes (to find this line l consider the (Euclidean) lines t1 and t2 passing through T and
tangent to the boundary of the disc, then l is the line through the points t1 ∩ ∂H2 and t2 ∩ ∂H2).

16.3. Let u, v be two vectors in R2,1. Denote Q = | ⟨u,v⟩2
⟨u,u⟩⟨v,v⟩ |, where ⟨x, y⟩ = x1y1 + x2y2 − x3y3. Show

the following distance formulae:

(a) if ⟨u, u⟩ < 0, ⟨v, v⟩ < 0, then u and v give two points in H2, and cosh2(u, v) = Q.

(b) if ⟨u, u⟩ < 0, ⟨v, v⟩ > 0, then u gives a point and v give a line lv on H2, and sinh2 d(u, lv) = Q.
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(c) if ⟨u, u⟩ > 0, ⟨v, v⟩ > 0 then u and v define two lines lu and lv on H2 and

– if Q < 1, then lu intersects lv forming angle φ satisfying Q = cos2 φ;

– if Q = 1, then lu is parallel to lv;

– if Q > 1, then lu and lv are ultra-parallel lines satisfying Q = cosh2 d(lu, lv).

Solution. We will compute in the hyperboloid model. Moreover, we will use isometry group to
reduce the question to a 2-dimensional one.

(a) By transitivity of isometry group on H2 we may assume u = (0, 0, 1). Applying a rotation
around this point (in 3-dimensional space it is represented by a rotation around the third
coordinate axis) we may assume that v = (v1, 0, v3), v21 − v23 = −1. We will also assume
v1 > 0.

We find d(u, v) by definition, as a cross-ratio of four lines.

The line (plane in the model) through u and v has the equation x2 = 0, i.e. it is the line
⟨x, a⟩ = 0 the vector a = (0, 1, 0). This line intersects the absolute at the points ⟨x, x⟩ = 0,
x2 = 0, i.e. in x2

1 − x2
3 = 0 which gives two solutions for x3 > 0: X = (−1, 0, 1) and

Y = (1, 0, 1).To find the distance d(u, v) we need to find a cross-ratio of four lines spanned by
u, v,X and Y .

To find the cross-ratio of four lines we need to intersect all four lines by some line l (and the
result does not depend on the choice of l!). Choose l to be the horizontal line through (0, 0, 1)
(it is given by equations x3 = 1, x2 = 0). Renormalizing v = (v1, 0, v3) so that it belongs to
the plane x3 = 1 we get v′ = (v1v3 , 0, 1). So, using the line x3 = 1, x2 = 0 we get∣∣[u, v, Y,X]

∣∣ = ∣∣[0, v1
v3

, 1,−1]
∣∣ = ∣∣ 1− 0

1− v1/v3
/
−1− 0

−1− v1
v3

∣∣ = aaaaaaaaaaaaaa

aaaaaaaaaaaaaa =
∣∣v1 + v3
v1 − v3

∣∣ = ∣∣ (v1 + v3)
2

v21 − v23

∣∣ = (v1 + v3)
2,

so that

d(u, v) =
1

2

∣∣ln|[u, v,X, Y ]|
∣∣ = 1

2
ln(v1 + v3)

2 = ln(v1 + v3),

which implies ed = v1 + v3, and

cosh d =
v1 + v3 +

1
v1+v3

2
=

v3 +
1+v1(v1+v3)

v1+v3

2
=

v3 +
1+v2

1+v1v3)
v1+v3

2
=

v3 +
v2
3+v1v3)
v1+v3

2
= v3

On the other hand,
⟨u, v⟩2

⟨u, u⟩⟨v, v⟩
=

v23
(−1)(−1)

= v23 .

Thus,

cosh2 d(u, v) = | ⟨u, v⟩2

⟨u, u⟩⟨v, v⟩
|.

(b) Let t ∈ lv be an orthogonal projection of u to lv, i.e. the line tu is perpendicular to lv. Clearly,
d(u, lv) = d(u, t).

Without loss of generality we may assume that u = (0, 0, 1) and t = (t1, 0, t3), t
2
1 − t23 = −1

By part (a),

cosh2 d(u, lv) = cosh2 d(u, t) = | t23
(−1)(−1)

| = t23.

Therefore,
sinh2 d(u, lv) = cosh2 d(u, lv)− 1 = t23 − 1 = t21.

Now, let us find the equation for the line lv. The line tu corresponds to the plane given by
the equation x2 = 0. The whole pattern (i.e. hyperboloid, the point u, the line lv the line
tu) is symmetric with respect to this plane. Hence, the vector v defining the line lv has zero
second coordinate v2 = 0, which implies v = (v1, 0, v3). Since the line lv contains the point
t = (t1, 0, t3), we have ⟨v, t⟩ = 0, i.e. v1t1 − v3t3 = 0. This implies v = λ(t3, 0, t1), or simply
v = (t3, 0, t1) after rescaling ⟨v, v⟩ = 1. Hence,

| ⟨u, v⟩2

⟨u, u⟩⟨v, v⟩
| = | t21

(−1) · 1
| = t21,

which coincides with the value of sinh2 d(u, lv).
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(c) – Q < 1. Applying an isometry, we may assume that the point of intersection of lu and
lv is (0, 0, 1). Then the planes through the origin representing the lines lu and lv are
vertical planes (passing through the third coordinate axis), these planes are represented
by vectors (u1, u2, 0), (v1, v2, 0) (to see that notice, that the vertical planes are symmetric
with respect to the plane x3 = 0). Furthermore, due to the rotational symmetry, the
angles at the point (0, 0, 1) are Euclidean angles, i.e. ϕ (or π−ϕ) coincides with the angle
between (u1, u2, 0) and (v1, v2, 0). By Euclidean formula for computation of angles we get

cosϕ = ± ⟨u, v⟩√
⟨u, u⟩⟨v, v⟩

(we may use pseudo-scalar product ⟨·, ·⟩ in a Euclidean formula since the third coordinate
is zero).

– Q > 1. Let h be a line orthogonal to both lu and lv. Let hu = h ∩ lu and hv = h ∩ lv be
the intersection points. Then d(lu, lv) = d(hu, hv).
Without loss of generality we may assume hu = (0, 0, 1) and hv = (t1, 0, t3), t

2
1 − t23 = 1

(so that h corresponds to the plane x2 = 0), see Fig. 3 for the projection to the plain
x3 = 1. Then lu and lv are represented by the vectors u = (1, 0, 0) and v = (t3, 0, t1)
(since ⟨hv, v⟩ = 0 and v2 = 0). This implies that

cosh2 d(hu, hv) = | ⟨hu, hv⟩2

⟨hu, hu⟩⟨hv, hv⟩
| = t3

|t21 − t23|
= | ⟨u, v⟩2

⟨u, u⟩⟨v, v⟩
|,

This proves the theorem since d(lu, lv) = d(hu, hv).

– Q = 1. The result for this case follows from two previous ones by continuity.

16.4. (*) Consider the two-sheet hyperboloid model {u = (u1, u2, u3) ∈ R2,1 | ⟨u, u⟩ = −1, u3 > 0},
where ⟨u, u⟩ = u2

1 + u2
2 − u2

3.

(a) For the vectors

v1 = (2, 1, 2) v2 = (0, 1, 2) v3 = (3, 4, 5)
v4 = (1, 0, 0) v5 = (0, 1, 0) v6 = (1, 1, 2)

decide if vi corresponds to a point in H2, or a point in the absolute, or a line in H2.

(b) Find the distance between the two points of H2 described in (a).

(c) Which pair the lines in (a) is intersecting? Which lines are parallel? Which are ultra-parallel?

(d) Find the distance between the pair of ultra-parallel lines in (a).

(e) Does any of the points in (a) lie on any of the three lines?

(f) Find the angle between the pair of intersecting lines.

Solution.

(a) We need to check ⟨vi, vi⟩: if it is negative, vi corresponds to a point of hyperbolic plane, if it
is equal to zero, vi is a point of the absolute, if it is positive, then vi corresponds to a line
(more precisely, it is a normal vector to plane through (0, 0, 0) which determines a line in the
model).

⟨v1, v1⟩ = 4 + 1− 4 = 1 > 0, line;
⟨v2, v2⟩ = 0 + 1− 4 = −3 < 0, point
⟨v3, v3⟩ = 9 + 16− 25 = 0, point of the absolute;
⟨v4, v4⟩ = 1 + 0− 0 = 1 > 0, line;
⟨v5, v5⟩ = 0 + 1− 0 = 1 > 0, line;
⟨v6, v6⟩ = 1 + 1− 4 = −2 < 0, point.

(b)

cosh2(d(v2, v6)) =
⟨v2, v6⟩2

⟨v2, v2⟩⟨v6, v6⟩
=

(0 + 1− 4)2

(−3)(−2)
=

9

6
=

3

2
.

So, d(v2, v6) = arcCosh
√

3
2 .
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(c) | ⟨v1,v4⟩2
⟨v1,v1⟩⟨v4,v4⟩ | =

4
1·1 = 4 > 1, so, v1 and v4 are ultra-parallel lines.

| ⟨v1,v5⟩2
⟨v1,v1⟩⟨v5,v5⟩ | =

1
1·1 = 1, so, v1 is parallel to v5.

| ⟨v4,v5⟩2
⟨v4,v4⟩⟨v5,v5⟩ | =

0
1·1 = 0 < 1, so, v4 intersects v5.

(d) cosh2(d) = | ⟨v1,v4⟩2
⟨v1,v1⟩⟨v4,v4⟩ | = 4, so, d = arcCosh 2.

(e) A point vi lies on a line vj if and only if ⟨vi, vj⟩ = 0.
This holds for the point v2 and the line v4.

This also holds for the point of the absolute v3 and the line v1.

(f) cos2 α = | ⟨v4,v5⟩2
⟨v4,v4⟩⟨v5,v5⟩ | = 0, so, the lines are orthogonal.
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