Solutions 17-18

17.1. Prove that any pair of parallel lines can be transformed to any other pair of parallel lines by an isometry.

Solution. Consider a pair of parallel lines l_{1} and l_{2} in the upper half-plane model. Let X be the common point (lying at the absolute) of these lines and Y_{1} and Y_{2} be other endpoints of these lines. By triple transitivity of isometries on points of the absolute, we can see that $X, Y_{1} Y_{2}$ may be mapped to the endpoints of any other pair of parallel lines.
Remark: another option is just to look at these line in the upper half-plane, assuming $X=\infty$.
17.2. Let $A, B \in \gamma$ be two points on a horocycle γ. Show that the perpendicular bisector to $A B$ is orthogonal to γ.

Solution. Consider the situation in the upper half-plane model, and let ∞ be the centre of the horocycle. Then γ is represented by a horizontal line, the perpendicular bisector to $A B$ is represented by a vertical ray, which is obviously orthogonal to the horocycle.
17.3. Let l_{1}, l_{2}, l_{3} be three lines in \mathbb{H}^{2}, let r_{i} be the reflection with respect to l_{i} and let $f=r_{3} \circ r_{2} \circ r_{1}$. Show that f is either a reflection or a glide reflection, i.e. a hyperbolic translation along some line composed with a reflection with respect to the same line.
Assuming that the lines l_{1}, l_{2}, l_{3} are not passing through the same point and not having a common perpendicular, show that f is a glide reflection.

Solution.

Step 1. Consider first the restriction of f to the absolute (parameterised by the angle $\varphi \in[0,2 \pi)$).
 Hence, there are exactly two points where $f(\varphi)=\varphi$ (the intersection points of the graph of f with the diagonal). This implies that f preserves 2 points of the absolute.
Now, in question 14.10 we have already classified all isometries preserving two points of the absolute. In particular, for the orientation-reversing case we have seen that there is a one-parametric family of such isometries, and that in the upper half-plane (with 0 and ∞ fixed) it may be written as $-a \bar{z}$, $a \in R_{+}$. Notice that this is a composition of a hyperbolic translation along 0∞ and a reflection with respect to the same line.
Step 2. Now, we need to show that the hyperbolic translation mentioned above is non-trivial (not $\overline{i d)}$ whenever the lines l_{1}, l_{2}, l_{3} are having neither common point nor common perpendicular.
Suppose the contrary, i.e. that f is a reflection r with respect to a line l, i.e. $r_{3} \circ r_{2} \circ r_{1}=r$. This implies that $r_{3} \circ r_{2}=r \circ r_{1}$. If $l_{3} \cap l_{2} \neq \emptyset$ (i.e. some point X either in \mathbb{H}^{2} or in $\partial \mathbb{H}^{2}$), then the point X is preserved by $r_{3} \circ r_{2}$, and hence is preserved by $r \circ r_{1}$. This implies that X is a common point of all four lines l_{1}, l_{2}, l_{3} and l, which contradicts to the assumption that the lines l_{1}, l_{2}, l_{3} have no common point. If $l_{3} \cap l_{2}=\emptyset$ then l_{3} and l_{4} have a comon perpendicular l^{\perp} which is preserved by both r_{3} and r_{2}, and hence is preserved by $r_{3} \circ r_{2}$. Therefore, l^{\perp} is also preserved by $r \circ r_{1}$. This implies that l^{\perp} is a common perpendicular for l and l_{1}. So, l^{\perp} is perpendicular to each of l_{1}, l_{2}, l_{3} and l, which contradicts to the assumption that the lines l_{1}, l_{2}, l_{3} have no common perpendicular.
17.4. Given an isometry f of the hyperbolic plane such that the distance from A to $f(A)$ is the same for all points $A \in \mathbb{H}^{2}$, show that f is an identity map.

Solution. If f is not an identity, then, by classification of isometries, it is either a reflection, or a rotation, or a parabolic translation, or a hyperbolic translation, or a glide reflection. For each of these transformations we will show that there are points mapped to arbitrarily large distance.
Indeed, let l be a line with endpoints X and Y such X is not preserved by f (this is possible as a non-trivial isometry cannot preserve more than two points of the absolute by Corollary 6.16). Let $X^{\prime}=f(X)$. Consider a point $T=T_{t}$ running along l from Y to X when t runs from $-\infty$ to ∞.

Then the distance $d\left(f\left(T_{t}\right), T_{t}\right)$ tends to $d(f(X), X)$ as a continuous function of t, but as $X \neq f(X)$ are two points of the absolute, $d(f(X), X)=\infty$. So, for every constant C there is a point T_{t} such that $d\left(f\left(T_{t}\right), T_{t}\right)>C$. So, a non-trivial isometry cannot move all points by the same distance.
17.5. Let a and b be two vectors in the hyperboloid model such that $\langle a, a\rangle>0$ and $\langle b, b\rangle>0$. Let l_{a} and l_{b} be the lines determined by equations $\langle x, a\rangle=0$ and $\langle x, b\rangle=0$ respectively. And let r_{a} and r_{b} be reflections with respect to l_{a} and l_{b}.
(a) For $a=(0,1,0)$ and $b=(1,0,0)$ write down r_{a} and r_{b}. Find $r_{b} \circ r_{a}(v)$, where $v=(0,1,2)$.
(b) What type is the isometry $\phi=r_{b} \circ r_{a}$ for $a=(1,1,1)$ and $b=(1,1,-1)$? (Hint: you don't need to compute r_{a} and r_{b}).
(c) Find an example of a and b such that $\phi=r_{b} \circ r_{a}$ is a rotation by $\pi / 2$.

Solution.

(a) $r_{a}(x)=x-2 \frac{\langle x, a\rangle}{\langle a, a\rangle} a, \quad r_{b}(x)=x-2 \frac{\langle x, b\rangle}{\langle b, b\rangle} b ;$
$\langle a, a\rangle=1,\langle v, a\rangle=1$, so,
$u:=r_{a}(v)=r_{a}((0,1,2))=(0,1,2)-2 \frac{1}{1}(0,1,0)=(0,-1,2)$.
$\langle b, b\rangle=1,\langle u, b\rangle=0$, so,
$r_{b} \circ r_{a}(v)=r_{b}(u)=(0,-1,2)-0=(0,-1,2)$.
(b) To find the type of isometry $\phi=r_{b} \circ r_{a}$ it is sufficient to determine weather the lines l_{a} and l_{b} are intersecting, or parallel, or ultra-parallel:

- if they do intersect ϕ is elliptic;
- if they are parallel ϕ is parabolic;
- if they are ultra-parallel ϕ is hyperbolic.

The behaviour of two lines is determined by the value $Q=\frac{\langle a, b\rangle^{2}}{\langle a, a\rangle\langle b, b\rangle}$:

- l_{a} intersects l_{b} if $Q<1$;
- l_{a} is parallel to l_{b} if $Q=1$;
- l_{a} is ultra-parallel to l_{b} if $Q>1$.

In our case, $Q=\frac{9}{1 \cdot 1}>1$, so that the lines are ultra-parallel. This implies that ϕ is hyperbolic.
(c) To get a rotation by $\pi / 2$ we need to find two lines making the angle $\pi / 4$. The easiest way to get such a pair of lines is to put their intersection into the centre of the model where the angles do coincide with Euclidean ones.
Take the lines defined by $a=(1,0,0)$ and $\left.b=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right)\right)$. Then $\cos ^{2}(\angle a b)=Q=\frac{\left(\frac{\sqrt{2}}{2}\right)^{2}}{1 \cdot 1}=\frac{2}{4}$. So, $\angle a b=\arccos \frac{\sqrt{2}}{2}=\pi / 4$.
18.1 Let l be a line on the hyperbolic plane and let E_{l} be the equidistant curve for l.
(a) Let C_{1} and C_{2} be two connected components of the same equidistant curve E_{l}. Show that that C_{1} is also equidistant from C_{2}, i.e. given a point $A \in C_{1}$ the distance $d\left(A, C_{2}\right)$ from A to C_{2} does not depend on the choice of A.
(b) Let $A \in E_{l}$ be a point on the equidistant curve, and let $A_{l} \in l$ be the point of l closest to A. Show that the line $A A_{l}$ is orthogonal to the equidistant curve.
(c) Let $P, Q \in l$ be two points on l. Let $A \in E_{l}$ be a point of the equidistant curve such that the segments $A P$ and $A Q$ contain no point of E_{l} except A. Continue the rays $A P$ and $A Q$ till the next intersection points with E_{l}, denote the resulting intersection points by B and C. Let T be a curvilinear triangle $A B C$ (with geodesic sides $A B$ and $A C$, but $B C$ being a segment of the equidistant curve). Assuming that all angles of $A B C$ are acute show that the area of T does not depend on the choice of $A \in E_{l}$.
(d) With the assumptions of (c), show that the area of the geodesic triangle $A B C$ does not depend on the choice of A.

Solution.

(a) Any hyperbolic translation along the line l preserves both C_{1} and C_{2} (not pointwise) and moves A along C_{1}. Moreover, for any $B \in C_{1}$ there is a suitable translation T along l such that $T(A)=B$. So, the distance from B to C_{2} is the same as $d\left(A, C_{2}\right)$.
(b) In the upper half-plane model, let l be a vertical ray on the line $x=0$. Then the equidistant curve is the union of two rays from the origin, the line $A A_{l}$ is represented by a half of a circle centred at the origin and is obviously orthogonal to the rays forming the equidistant curve. As the upper half-plane model is conformal, this implies that $A A_{l}$ is orthogonal to E_{l} in the sense of hyperbolic geometry.
(c) Let l_{P} the line through P orthogonal to l and let X_{1} and Y_{1} be the intersections of l_{P} with C_{1} and C_{2} respectively lying on distance c_{0} from P. Similarly, we construct the line l_{Q} through $Q, l_{Q} \perp l$, and its intersection points X_{2} and Y_{2} with C_{1} and C_{2}.
Consider the curvilinear triangles $P A X_{1}$ and $P B Y_{1}$. The rotation R by π around P swaps these triangles (indeed, R preserves all lines through P and swaps the circles C_{1} and C_{2}). This implies that these curvilinear triangle have equal areas. Similarly, the curvilinear triangles $Q A X_{2}$ and $Q C Y_{2}$ have equal areas. So, the area of the curvilinear triangle $A B C$ coincides with the area of curvilinear quadrilateral $X_{1} X_{2} Y_{2} Y_{1}$ (with geodesic sides $X_{1} X_{2}$ and $Y_{1} Y_{2}$, but sides $X_{1} X_{2}$ and $Y_{1} Y_{2}$ being the segments of the equidistant curve). The later area does not depend on the choice of A. Notice, that here we use that $A B C$ is acute-angled (if angle B or C is obtuse the diagram is more complicated).

(d) It is sufficient to prove that the distance between B and C does not depend on the choice of A (then the area of $A B C$ differs from the area of T by the area of a lune $B C$ formed by the geodesic segment and a segment of the equidistant curve).
To see that $d(B, C)$ is independent of the choice of A, consider the orthogonal projections A_{l}, B_{l} and C_{l} of the points A, B, C to the line l. Clearly, $d\left(B_{l}, P\right)=d\left(A_{l}, P\right)$ and $d\left(C_{l}, Q\right)=d\left(A_{l}, Q\right)$. This implies that $d\left(B_{l}, C_{l}\right)=2 d(P, Q)$, (here we use that $A B C$ is acute-angled and hence, $\left.A_{l} \in P Q\right)$, which does not depend on A. Therefore, $d(B, C)$ does not depend on A.
18.2. (*)
(a) Let l and l^{\prime} be ultra-parallel lines. Let γ be an equidistant curve for l intersecting l^{\prime} in two points A and B. Denote by h the common perpendicular to l and l^{\prime} and let $H=h \cap l^{\prime}$ be the intersection point. Show that $A H=H B$.
(b) Let l be a line and γ be an equidistant curve for l. For two points A, B on γ, show that the perpendicular bisector of $A B$ is also orthogonal to l.
(c) Let $A B C$ be a triangle in the Poincare disc model. Let γ be a Euclidean circumscribed circle (i.e. a circumscribed circle for $A B C$ considered as a Euclidean triangle). Suppose that γ intersects the absolute at points X and Y. Show that the (hyperbolic) perpendicular bisector to $A B$ is orthogonal to the hyperbolic line $X Y$
(d) Show that three perpendicular bisectors in a hyperbolic triangle are either concurrent, or parallel, of have a common perpendicular.

Solution.

(a) Let l be the imaginary axis in the upper half-plane. Then γ is represented by some other Euclidean ray emanating from 0 , and h is represented by (a part of) some Euclidean circle centred at 0 . Hence, h is orthogonal to γ. Now, consider the reflection r_{h} with respect to h. It preserves the line 0∞ (not pointwise), so, it preserves the equidistant curve γ. Also, it preserves the line l^{\prime} (as l^{\prime} is orthogonal to h. So, the intersection $A \in l^{\prime} \cap \gamma$ should be mapped by r_{h} to another point in $l^{\prime} \cap \gamma$, which is B. This implies that h is the perpendicular bisector $A B$.
(b) This is just another wording of part (a). Let l^{\prime} be the line $A B$, then we have proved that the common perpendicular to l and l^{\prime} coincides with the perpendicular bisector of $A B$. In particular, the latter is orthogonal to l.
(c) The curve γ is an equidistant curve to the line $X Y$. Indeed, applying a Möbius transformation mapping the Poincare disc to the upper half-plane and the points X and Y to 0 and ∞, we take γ to some Euclidean line through 0, and the perpendicular bisector of $A B$ is mapped to the perpendicular bisector of the image. The latter is orthogonal to 0∞ (by part (b)).
(d) Consider the triangle $A B C$ in the Poincare disc model. Let γ be the Euclidean circle through A, B, C. Consider three cases: γ lies inside hyperbolic plane, is tangent to the absolute or intersects the absolute at two different points.
If γ intersects the absolute at two points X and Y, then as shown in part (c) all perpendicular bisectors are orthogonal to $X Y$.
If γ is tangent to the absolute at X, then mapping this to the upper half-plane (with X mapped to ∞) we see that γ is a horocycle. It is shown in Question 17.2 that all perpendicular bisectors are orthogonal to γ, i.e. in the upper half-plane they are all represented by vertical rays - i.e. are parallel to each other.
If γ lies entirely inside the hyperbolic plane, it actually represents a hyperbolic circle. So, $A B C$ has a circumscribed circle, whose centre is the point of concurrence of all three perpendicular bisectors.
Here are the diagrams showing what can happen in (c) and (d):

or, even more precisely:

