
Anna Felikson, Durham University Geometry, 16.3.2024

Solutions 17-18

17.1. Prove that any pair of parallel lines can be transformed to any other pair of parallel lines by an
isometry.

Solution. Consider a pair of parallel lines l1 and l2 in the upper half-plane model. Let X be
the common point (lying at the absolute) of these lines and Y1 and Y2 be other endpoints of these
lines. By triple transitivity of isometries on points of the absolute, we can see that X,Y1Y2 may be
mapped to the endpoints of any other pair of parallel lines.

Remark: another option is just to look at these line in the upper half-plane, assuming X = ∞.

17.2. Let A,B ∈ γ be two points on a horocycle γ. Show that the perpendicular bisector to AB is
orthogonal to γ.

Solution. Consider the situation in the upper half-plane model, and let ∞ be the centre of
the horocycle. Then γ is represented by a horizontal line, the perpendicular bisector to AB is
represented by a vertical ray, which is obviously orthogonal to the horocycle.

17.3. Let l1, l2, l3 be three lines in H2, let ri be the reflection with respect to li and let f = r3 ◦ r2 ◦ r1.
Show that f is either a reflection or a glide reflection, i.e. a hyperbolic translation along some line
composed with a reflection with respect to the same line.

Assuming that the lines l1, l2, l3 are not passing through the same point and not having a common
perpendicular, show that f is a glide reflection.

Solution.

Step 1. Consider first the restriction of f to the absolute (parameterised by the angle φ ∈ [0, 2π)).
As f is orientation-reversing, the function f(φ) (considered modulo 2π) is monotonically decreasing.
Hence, there are exactly two points where f(φ) = φ (the intersection points of the graph of f with
the diagonal). This implies that f preserves 2 points of the absolute.

Now, in question 14.10 we have already classified all isometries preserving two points of the absolute.
In particular, for the orientation-reversing case we have seen that there is a one-parametric family
of such isometries, and that in the upper half-plane (with 0 and ∞ fixed) it may be written as −az̄,
a ∈ R+. Notice that this is a composition of a hyperbolic translation along 0∞ and a reflection
with respect to the same line.

Step 2. Now, we need to show that the hyperbolic translation mentioned above is non-trivial (not
id) whenever the lines l1, l2, l3 are having neither common point nor common perpendicular.

Suppose the contrary, i.e. that f is a reflection r with respect to a line l, i.e. r3 ◦ r2 ◦ r1 = r. This
implies that r3 ◦ r2 = r ◦ r1. If l3 ∩ l2 ̸= ∅ (i.e. some point X either in H2 or in ∂H2), then the point
X is preserved by r3 ◦ r2, and hence is preserved by r ◦ r1. This implies that X is a common point
of all four lines l1, l2, l3 and l, which contradicts to the assumption that the lines l1, l2, l3 have no
common point. If l3 ∩ l2 = ∅ then l3 and l4 have a comon perpendicular l⊥ which is preserved by
both r3 and r2, and hence is preserved by r3 ◦ r2. Therefore, l⊥ is also preserved by r ◦ r1. This
implies that l⊥ is a common perpendicular for l and l1. So, l⊥ is perpendicular to each of l1, l2, l3
and l, which contradicts to the assumption that the lines l1, l2, l3 have no common perpendicular.

17.4. Given an isometry f of the hyperbolic plane such that the distance from A to f(A) is the same for
all points A ∈ H2, show that f is an identity map.

Solution. If f is not an identity, then, by classification of isometries, it is either a reflection, or a
rotation, or a parabolic translation, or a hyperbolic translation, or a glide reflection. For each of
these transformations we will show that there are points mapped to arbitrarily large distance.

Indeed, let l be a line with endpoints X and Y such X is not preserved by f (this is possible as a
non-trivial isometry cannot preserve more than two points of the absolute by Corollary 6.16). Let
X ′ = f(X). Consider a point T = Tt running along l from Y to X when t runs from −∞ to ∞.
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Then the distance d(f(Tt), Tt) tends to d(f(X), X) as a continuous function of t, but as X ̸= f(X)
are two points of the absolute, d(f(X), X) = ∞. So, for every constant C there is a point Tt such
that d(f(Tt), Tt) > C. So, a non-trivial isometry cannot move all points by the same distance.

17.5. Let a and b be two vectors in the hyperboloid model such that ⟨a, a⟩ > 0 and ⟨b, b⟩ > 0. Let la and
lb be the lines determined by equations ⟨x, a⟩ = 0 and ⟨x, b⟩ = 0 respectively. And let ra and rb be
reflections with respect to la and lb.

(a) For a = (0, 1, 0) and b = (1, 0, 0) write down ra and rb.
Find rb ◦ ra(v), where v = (0, 1, 2).

(b) What type is the isometry ϕ = rb ◦ ra for a = (1, 1, 1) and b = (1, 1,−1)?
(Hint: you don’t need to compute ra and rb).

(c) Find an example of a and b such that ϕ = rb ◦ ra is a rotation by π/2.

Solution.

(a) ra(x) = x− 2 ⟨x,a⟩
⟨a,a⟩a, rb(x) = x− 2 ⟨x,b⟩

⟨b,b⟩ b;

⟨a, a⟩ = 1, ⟨v, a⟩ = 1, so,

u := ra(v) = ra((0, 1, 2)) = (0, 1, 2)− 2 1
1 (0, 1, 0) = (0,−1, 2).

⟨b, b⟩ = 1, ⟨u, b⟩ = 0, so,

rb ◦ ra(v) = rb(u) = (0,−1, 2)− 0 = (0,−1, 2).

(b) To find the type of isometry ϕ = rb ◦ ra it is sufficient to determine weather the lines la and lb are
intersecting, or parallel, or ultra-parallel:

• if they do intersect ϕ is elliptic;

• if they are parallel ϕ is parabolic;

• if they are ultra-parallel ϕ is hyperbolic.

The behaviour of two lines is determined by the value Q = ⟨a,b⟩2
⟨a,a⟩⟨b,b⟩ :

• la intersects lb if Q < 1;

• la is parallel to lb if Q = 1;

• la is ultra-parallel to lb if Q > 1.

In our case, Q = 9
1·1 > 1, so that the lines are ultra-parallel. This implies that ϕ is hyperbolic.

(c) To get a rotation by π/2 we need to find two lines making the angle π/4. The easiest way to get
such a pair of lines is to put their intersection into the centre of the model where the angles do
coincide with Euclidean ones.

Take the lines defined by a = (1, 0, 0) and b = (
√
2
2 ,

√
2
2 , 0)). Then cos2(∠ab) = Q =

(
√

2
2 )2

1·1 = 2
4 . So,

∠ab = arccos
√
2
2 = π/4.

18.1 Let l be a line on the hyperbolic plane and let El be the equidistant curve for l.

(a) Let C1 and C2 be two connected components of the same equidistant curve El. Show that
that C1 is also equidistant from C2, i.e. given a point A ∈ C1 the distance d(A,C2) from A to
C2 does not depend on the choice of A.

(b) Let A ∈ El be a point on the equidistant curve, and let Al ∈ l be the point of l closest to A.
Show that the line AAl is orthogonal to the equidistant curve.

(c) Let P,Q ∈ l be two points on l. Let A ∈ El be a point of the equidistant curve such that the
segments AP and AQ contain no point of El except A. Continue the rays AP and AQ till the
next intersection points with El, denote the resulting intersection points by B and C. Let T
be a curvilinear triangle ABC (with geodesic sides AB and AC, but BC being a segment of
the equidistant curve). Assuming that all angles of ABC are acute show that the area of T
does not depend on the choice of A ∈ El.
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(d) With the assumptions of (c), show that the area of the geodesic triangle ABC does not depend
on the choice of A.

Solution.

(a) Any hyperbolic translation along the line l preserves both C1 and C2 (not pointwise) and
moves A along C1. Moreover, for any B ∈ C1 there is a suitable translation T along l such
that T (A) = B. So, the distance from B to C2 is the same as d(A,C2).

(b) In the upper half-plane model, let l be a vertical ray on the line x = 0. Then the equidistant
curve is the union of two rays from the origin, the line AAl is represented by a half of a circle
centred at the origin and is obviously orthogonal to the rays forming the equidistant curve.
As the upper half-plane model is conformal, this implies that AAl is orthogonal to El in the
sense of hyperbolic geometry.

(c) Let lP the line through P orthogonal to l and let X1 and Y1 be the intersections of lP with C1

and C2 respectively lying on distance c0 from P . Similarly, we construct the line lQ through
Q, lQ ⊥ l, and its intersection points X2 and Y2 with C1 and C2.

Consider the curvilinear triangles PAX1 and PBY1. The rotation R by π around P swaps
these triangles (indeed, R preserves all lines through P and swaps the circles C1 and C2). This
implies that these curvilinear triangle have equal areas. Similarly, the curvilinear triangles
QAX2 and QCY2 have equal areas. So, the area of the curvilinear triangle ABC coincides
with the area of curvilinear quadrilateral X1X2Y2Y1 (with geodesic sides X1X2 and Y1Y2, but
sides X1X2 and Y1Y2 being the segments of the equidistant curve). The later area does not
depend on the choice of A. Notice, that here we use that ABC is acute-angled (if angle B or
C is obtuse the diagram is more complicated).

QP

X1

Y1B

A X2

Y2 C

(d) It is sufficient to prove that the distance between B and C does not depend on the choice of
A (then the area of ABC differs from the area of T by the area of a lune BC formed by the
geodesic segment and a segment of the equidistant curve).

To see that d(B,C) is independent of the choice of A, consider the orthogonal projections Al, Bl

and Cl of the points A,B,C to the line l. Clearly, d(Bl, P ) = d(Al, P ) and d(Cl, Q) = d(Al, Q).
This implies that d(Bl, Cl) = 2d(P,Q), (here we use that ABC is acute-angled and hence,
Al ∈ PQ), which does not depend on A. Therefore, d(B,C) does not depend on A.

18.2. (*)

(a) Let l and l′ be ultra-parallel lines. Let γ be an equidistant curve for l intersecting l′ in two
points A and B. Denote by h the common perpendicular to l and l′ and let H = h∩ l′ be the
intersection point. Show that AH = HB.

(b) Let l be a line and γ be an equidistant curve for l. For two points A,B on γ, show that the
perpendicular bisector of AB is also orthogonal to l.

(c) Let ABC be a triangle in the Poincare disc model. Let γ be a Euclidean circumscribed circle
(i.e. a circumscribed circle for ABC considered as a Euclidean triangle). Suppose that γ
intersects the absolute at points X and Y . Show that the (hyperbolic) perpendicular bisector
to AB is orthogonal to the hyperbolic line XY

(d) Show that three perpendicular bisectors in a hyperbolic triangle are either concurrent, or
parallel, of have a common perpendicular.

Solution.
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(a) Let l be the imaginary axis in the upper half-plane. Then γ is represented by some other
Euclidean ray emanating from 0, and h is represented by (a part of) some Euclidean circle
centred at 0. Hence, h is orthogonal to γ. Now, consider the reflection rh with respect to
h. It preserves the line 0∞ (not pointwise), so, it preserves the equidistant curve γ. Also, it
preserves the line l′ (as l′ is orthogonal to h. So, the intersection A ∈ l′ ∩ γ should be mapped
by rh to another point in l′ ∩ γ, which is B. This implies that h is the perpendicular bisector
AB.

(b) This is just another wording of part (a). Let l′ be the line AB, then we have proved that
the common perpendicular to l and l′ coincides with the perpendicular bisector of AB. In
particular, the latter is orthogonal to l.

(c) The curve γ is an equidistant curve to the line XY . Indeed, applying a Möbius transformation
mapping the Poincare disc to the upper half-plane and the points X and Y to 0 and ∞, we
take γ to some Euclidean line through 0, and the perpendicular bisector of AB is mapped to
the perpendicular bisector of the image. The latter is orthogonal to 0∞ (by part (b)).

(d) Consider the triangle ABC in the Poincare disc model. Let γ be the Euclidean circle through
A,B,C. Consider three cases: γ lies inside hyperbolic plane, is tangent to the absolute or
intersects the absolute at two different points.

If γ intersects the absolute at two points X and Y , then as shown in part (c) all perpendicular
bisectors are orthogonal to XY .

If γ is tangent to the absolute at X, then mapping this to the upper half-plane (with X
mapped to ∞) we see that γ is a horocycle. It is shown in Question 17.2 that all perpendicular
bisectors are orthogonal to γ, i.e. in the upper half-plane they are all represented by vertical
rays - i.e. are parallel to each other.

If γ lies entirely inside the hyperbolic plane, it actually represents a hyperbolic circle. So, ABC
has a circumscribed circle, whose centre is the point of concurrence of all three perpendicular
bisectors.

Here are the diagrams showing what can happen in (c) and (d):

A

B

Cγ

A

B
C

γ

A

B C

γ

Y

X

or, even more precisely:

A

B

Cγ

A

B
C

γ

A

B C

γ

Y

X

4


