Feedback 1-2

Overall, it was an easy assignment and most of students did it very well.

- Question 2.1:

- Useful ideas:
- know the classification of isometries;
- look at decompositions into reflections.
- Typical mistakes:
- some of you have not explained why to look only at rotations and translations (classification of isometries + orientation);
- when demonstrating that translations are compositions of rotations, some students assumed that

$$
\text { if } f(A)=A^{\prime} \text { and } g(A)=A^{\prime} \text { then } f=g \text {, }
$$

which is wrong, you need to check images of 3 points to derive that.

- Strictly speaking, there are 5 types of isometries of \mathbb{E}^{2}, i.e. four non-trivial types and the identity. There is nothing to check for the identity, but it is not completely correct to write that there are exactly 4 types of isometries (I did not took any points for this, though).
- A source of confusion:
- Absence of clear understanding what does it mean when a group G is generated by a set $S \subset G$ of elements $\left\{s_{i} \in S\right\}$. Informally, it means that G is the smallest group containing all elements of S (in particular, containing all their inverses). Formally:

Definition. A group G is generated by a set $S \subset G$ of elements $\left\{s_{i} \in S\right\}$ if for every $g \in G$ there exist $n \in \mathbb{Z}$ and $s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{n}} \in S$ such that $g=s_{i_{n}}^{ \pm 1} \circ \cdots \circ s_{i_{2}}^{ \pm 1} \circ s_{i_{1}}^{ \pm 1}$. The elements of S in this case are called generators.

In particular, elements of $I \operatorname{som}^{+}\left(\mathbb{E}^{2}\right)$ are identity, rotations and translations.
Generators for the group may be chosen in many ways. Here are some options:

- all elements of $\operatorname{Isom}^{+}\left(\mathbb{E}^{2}\right)$;
- all rotations;
- rotations preserving the origin and translations.
- Question 2.4:
- Useful idea:
- you can use the classification of isometries without reproving it! (not need to derive from the fact that every isometry is a composition of 3 reflections).
- Typical mistakes:
- Some of you forgot that a rotation may be by an angle $\alpha \pi$ where α is irrational.
- Others forgot that there are rational numbers other than $1 / n, n \in \mathbb{Z}$.

- Question 2.7:

- Comments:
- It is straightforward to figure out what to compute in part (a). To make this computation shorter, compute in the vector form, not in coordinates! See solutions.
- The idea of this question was to obtain two different solutions:
(a)-(c): prove f is isometry by a computation, then use the fixed points to see it is a reflection;
(d): see that f is a reflection directly from geometry.
(First solution is straightforward, second is not).
- To demonstrate the geometric solution, it is very useful to draw a diagram.

