Assignment 17-18

Starred problems due on Friday, 15 March
17.1. Prove that any pair of parallel lines can be transformed to any other pair of parallel lines by an isometry.
17.2. Let $A, B \in \gamma$ be two points on a horocycle γ. Show that the perpendicular bisector to $A B$ is orthogonal to γ.
17.3. Let l_{1}, l_{2}, l_{3} be three lines in \mathbb{H}^{2}, let r_{i} be the reflection with respect to l_{i} and let $f=r_{3} \circ r_{2} \circ r_{1}$. Show that f is either a reflection or a glide reflection, i.e. a hyperbolic translation along some line composed with a reflection with respect to the same line.

Assuming that the lines l_{1}, l_{2}, l_{3} are not passing through the same point and not having a common perpendicular, show that f is a glide reflection.
17.4. $\left(^{*}\right)$ Given an isometry f of the hyperbolic plane such that the distance from A to $f(A)$ is the same for all points $A \in \mathbb{H}^{2}$, show that f is the identity map.
17.5. $\left(^{*}\right)$ Let a and b be two vectors in the hyperboloid model such that $\langle a, a\rangle>0$ and $\langle b, b\rangle>0$. Let l_{a} and l_{b} be the lines determined by equations $\langle x, a\rangle=0$ and $\langle x, b\rangle=0$ respectively. And let r_{a} and r_{b} be reflections with respect to l_{a} and l_{b}.
(a) For $a=(0,1,0)$ and $b=(1,0,0)$ write down r_{a} and r_{b}. Find $r_{b} \circ r_{a}(v)$, where $v=(0,1,2)$.
(b) What type is the isometry $\phi=r_{b} \circ r_{a}$ for $a=(1,1,1)$ and $b=(1,1,-1)$? (Hint: you don't need to compute r_{a} and r_{b}).
(c) Find an example of a and b such that $\phi=r_{b} \circ r_{a}$ is a rotation by $\pi / 2$.
18.1 Let l be a line on the hyperbolic plane and let E_{l} be the equidistant curve for l.
(a) Let C_{1} and C_{2} be two connected components of the same equidistant curve E_{l}. Show that that C_{1} is also equidistant from C_{2}, i.e. given a point $A \in C_{1}$ the distance $d\left(A, C_{2}\right)$ from A to C_{2} does not depend on the choice of A.
(b) Let $A \in E_{l}$ be a point on the equidistant curve, and let $A_{l} \in l$ be the point of l closest to A. Show that the line $A A_{l}$ is orthogonal to the equidistant curve.
(c) Let $P, Q \in l$ be two points on l. Let $A \in E_{l}$ be a point of the equidistant curve such that the segments $A P$ and $A Q$ contain no point of E_{l} except A. Continue the rays $A P$ and $A Q$ till the next intersection points with E_{l}, denote the resulting intersection points by B and C. Let T be a curvilinear triangle $A B C$ (with geodesic sides $A B$ and $A C$, but $B C$ being a segment of the equidistant curve). Assuming that all angles of $A B C$ are acute show that the area of T does not depend on the choice of $A \in E_{l}$.
(d) With the assumptions of (c), show that the area of the geodesic triangle $A B C$ does not depend on the choice of A.
18.2. (*)
(a) Let l and l^{\prime} be ultra-parallel lines. Let γ be an equidistant curve for l intersecting l^{\prime} in two points A and B. Denote by h the common perpendicular to l and l^{\prime} and let $H=h \cap l^{\prime}$ be the intersection point. Show that $A H=H B$.
(b) Let l be a line and γ be an equidistant curve for l. For two points A, B on one component of γ, show that the perpendicular bisector of $A B$ is also orthogonal to l.
(c) Let $A B C$ be a triangle in the Poincare disc model. Let γ be a Euclidean circumscribed circle (i.e. a circumscribed circle for $A B C$ considered as a Euclidean triangle). Suppose that γ intersects the absolute at points X and Y. Show that the (hyperbolic) perpendicular bisector to $A B$ is orthogonal to the hyperbolic line $X Y$.
(d) Show that three perpendicular bisectors in a hyperbolic triangle are either concurrent, or parallel, of have a common perpendicular.

References:

- Material on types of isometries in hyperbolic geometry, and on horocycles and equidistant curves is based on Lecture IX of Prasolov's book.
Alternatively, see pp.113-116 of Section 5.3 in Prasolov and Tikhomirov.

