Assignment 3-4
 Starred problems due on Friday, 3 November

3.1 Let $A B C$ be a triangle and let f be an isometry. Prove that the points C and D lie on the same side with respect to the line $A B$ if and only if the points $f(C)$ and $f(D)$ lie on the same side with respect to the line $f(A) f(B)$.
3.2 Let $f, g \in \operatorname{Isom}\left(\mathbb{E}^{2}\right)$. Show that $g(x) \in$ Fix $_{g f g^{-1}} \Leftrightarrow x \in \operatorname{Fix}_{f} \quad$ for all $x \in \mathbb{E}^{2}$.
$3.3\left(^{*}\right)$ Show that the map

$$
f(\mathbf{x})=A \mathbf{x}, \quad A \in G L_{2}(\mathbb{R})
$$

is an isometry if and only if $A \in O_{2}(\mathbb{R})$ (i.e. $A \in G L_{2}(\mathbb{R}), A^{T} A=I$).
3.4 Let $f: z \mapsto 2 z, z \in \mathbb{C}$. Let G be a group of transformations of \mathbb{E}^{2} generated by f.
(a) Does G act discretely on \mathbb{C} ? Justify your answer.
(b) Show that G acts discretely on $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$.
(c) Find a fundamental domain for the action $G: \mathbb{C}^{*}$.
$3.5\left(^{*}\right)$ Let P be a regular hexagon on \mathbb{E}^{2}.
(a) Find a group H acting on \mathbb{E}^{2} discretely and such that P is a fundamental domain for the action $H: \mathbb{E}^{2}$. (Describe the group in terms of its generators).
(b) Let G be a group generated by reflections with respect to the sides of P. Show that G is discrete.

The following three subquestions are a bit more involved and are not mandatory for submission. You are very welcome to write down and show me your solution/sketches/ideas but also don't worry if you are not really sure how to do that.
(c) Find a fundamental domain for G.
(d) Is H a subgroup of G ? If yes, find its index $[G: H]$.
(e) Describe the orbit space of the action $H: \mathbb{E}^{2}$.

Hint: if you were not too creative in part (a) you would probably get some space we have already seen in the course.
4.1 Let $G: \mathbb{E}^{2}$ be a cyclic group generated by a translation T. Let X be an orbit space of $G: \mathbb{E}^{2}$.
(a) Show that X is an infinitely long cylinder which admits a Euclidean metric (i.e. each point on X has a neighbourhood isometric to a domain in \mathbb{E}^{2}).
(b) Find a closed geodesic on X;
(c) Find an open geodesic on X.
4.2 Let X be a torus obtained by identification of opposite sides of the Euclidean square.
(a) Are there closed geodesics on X ?
(b) Are there open ones?
$4.3\left(^{*}\right)$ Given ruler and compass and a circle \mathcal{C} on the plane, construct the centre of the circle. You can use without proofs and further descriptions the construction of perpendicular bisector for a given segment.
4.4 (*) Does there exist a map of a domain on the sphere onto a domain on the Euclidean plane that takes the segments of spherical lines into segments of Euclidean lines?

References:

1. For material of Lecture 5 look at

- G. Jones, Algebra and Geometry, Lecture notes (Section 1).

2. You will find (almost) all material of Lecture 6 in

- N. Peyerimhoff, Geometry III/IV, Lecture notes (Section 1.6).

3. Material of Lecture 7 may be found in Kiselev's Geometry / Book II. Stereometry

- A. P. Kiselev, Geometry / Book II. Stereometry.

4. Starting from Lecture 8 we will follow

- V. V. Prasolov, Non-Euclidean Geometry
(our Lecture 8 is a first half of Prasolov's Lecture 1).

