
Anna Felikson, Durham University Geometry, 15.12.2025

Solutions 9-10

9.1 Show that removing a small disc from a projective plane we get a Möbius band.

Solution. One can use the following “cut and paste” argument:

9.2 Removing a line from R2 or from S2 one gets a space with two connected components.
Show that RP 2 \ RP 1 is a connected space.

Solution. Recall that RP 2 may be obtained obtained from S2 by identification of antipodal
points. Let as remove the line before the identification: we will get two open hemispheres. After
the identification we get an open disc.

9.3. Let the Möbius band M is obtained by gluing along the vertical sides of the square with vertices
(±1,±1). Let m be a midline of the Möbius band M (obtained from the segment of the line line
y = 0).

(a) what is M \m?

(b) Let l be the closed line obtained from y = 1/2 and y = −1/2. What is M \ l?

Solution. Glue the Möbius band from a piece of paper, take the scissors and cut along m or l
respectively.

9.4. Let C be the conic x2 + y2 = z2. What kind of space is RP 2 \C?

Solution. Looking at a hemisphere it is easy to see that RP 2 \C has two connected component,
one is the disc (“inside” of the conic), the other is a projective plane without disc, which is a
Möbius band as shown in Question 9.1.

9.5. Given a point P inside a circle and a chord AB through the point P , let MAB denote the
intersection point of the two lines tangent to the circle at A and B. Show that MAB runs over
some line as A runs over the circle.

Solution. When A runs over a circle, MAB runs over all points polar to A, so we get a line
polar to A.

9.6. Let C be the conic x2 + y2 = z2. A triangle in RP 2 is self-polar (with respect to C) if its sides
are polar to its vertices (not necessarily the opposite ones).

(a) Construct a self-polar triangle with two vertices on C.

(b) Does there exist a self-polar triangle with exactly one vertex on C?

(c) Show that there exists a self-polar triangle having no vertex on C.
Hint: it may have some vertices at infinity.

Solution. (a) A point A ∈ C is polar to a line lA tangent to C at A. So, if we take a point C
outside the conic, and consider the tangent lines LA and LB through C (tangent to C at A and
B respectively), then c = AB is polar to C, A is polar to a and B is polar to b.
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(b) Suppose that such a configuration ABC does exist. Let A be the vertex on C and a the
tangent at A. The side a of the triangle should have two vertices on it, one is A let B be the
other one. Next, let b be the side of the triangle polar to B: it should pass through A and
another point where a line through B is tangent to C. The last vertex C of the triangle ABC
should lie on the intersection of b and the line c polar to C. By assumption, C /∈ C. If C lies
inside the conic then the polar line c lies completely outside the conic, so C /∈ c. If C lies outside
the conic, then c intersects b inside the conic, so C ̸= b ∩ c.

(c) One can take a triangle with A at the centre of the circle, and B and C at infinity, so that
the lines b and c form a right angle and line a is the line at infinity.
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Remark. If you want to see such a configuration without vertices at infinity, look at Figure
(d). It rather easy to see that this configuration does exist (from continuity reasons), and more
difficult (but still possible) to find an explicit construction.

9.7. (a) Formulate the theorem dual to Desargues’ theorem.

(b) Draw an example. (Hint: send the line s to the line at infinity).

(c) Can you prove this theorem?

Solution. (a) We need to substitute: points by lines, lines by points,
a line through two points by a point of intersection of two lines,
intersection of two lines by a line through two points,
concurrency of lines by collinearity of points (and backwards).

The assumption was:

Suppose that the lines joining the corresponding vertices of triangles A1A2A3 and B1B2B3

intersect at one point S.

Denote by ai and bi the sides of the triangles opposite to Ai and Bi respectively. Then the
assumption says:

Suppose that the lines A1B1, A2B2, A3B3 intersect at one point S.

We rewrite:

Suppose that the points a1 ∩ b1, a2 ∩ b2, a3 ∩ b3 lie on one line s.

The conclusion was

Then the points P1 = A2A3 ∩B2B3, P2 = A1A3 ∩B1B3, P3 = A1A2 ∩B1B2 are collinear.

Instead of points Pi we will get lines pi:
p1 is a line through a2 ∩ a3 and b2 ∩ b3, in other words, p1 = A1B1, and similarly, p2 = A2B2,
p3 = A3B3.

So, we get the following conclusion:

Then the lines p1 = A1B1, p2 = A2B2, p3 = A3B3. are concurrent.

So, the dual to the Desargues’ Theorem is just the converse statement:

Suppose that the points a1 ∩ b1, a2 ∩ b2, a3 ∩ b3 lie on one line s.

Then the lines p1 = A1B1, p2 = A2B2, p3 = A3B3. are concurrent.
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(b)... and we actually don’t need to draw anything new!

(c) If we send the line s to infinity, then we get two triangles with corresponding sides parallel:
ai is parallel to bi. Let S = A1B1 ∩A2B2. Then it is easy to see that there exists a homothety
with centre S which takes points A1 to B1, A2 to B2. It also takes the line A1A3 to the line
parallel to it and passing through A1, i.e. to B1B3. Similarly, it takes the line A2A3 to B2B3.
This implies that A3 = A1A3 ∩A2A3 is mapped B3 = B1B3 ∩B2B3. Hence B3 lies on the line
SA3, i.e. S ∈ A3B3, and te lines A1B1, A2B2, A3B3 are concurrent at S.

10.1. (a) How many non-intersecting lines can you draw in the Klein model of hyperbolic plane?
(b) The same question, but no other line should intersect more than two lines of your family.

Solution. (a) Choosing the segments of parallel (in Euclidean sense) lines we may get as as
many mutually non-intersecting hyperbolic likes as we want (even uncountably many).

(b) To get countably many lines in the family we proceed as follow:
1) Take two disjoint lines

and color the two disjoint circular segments bounded by these lines;
2) In the uncolored domain insert a line between each two lines

and color the respective circular segment;
3) return to Step 2).

Here is the diagram for the first three iterations:

Now, suppose that a line l intersects two lines of the family. Then both ends of l should lies in
the corresponding colored circular segments. It is clear that such a line will not intersect any
other line in our family.

It is left to prove that it is impossible to find an uncountably big family of lines. First, suppose
that in our family there are three lines l1, l2andl3 such that the line l3 is contained in the union
of the disjoint circular segments bounded by l1 and l2. Then it is easy to construct a line l
intersecting all three lines l1, l2 and l3. This means that in our family all lines come with the
corresponding circular segment (and all these circular segments are mutually disjoint). As every
circular segment contains a boundary point which makes a rational angle with horizontal line,
we see that the number of the segments in our family is countable (here we use countability of
rational numbers).

10.2. Show that any two lines on hyperbolic plane either intersect inside the hyperbolic plane, or
intersect on its boundary, or have a unique common perpendicular.

Solution. Let AB and CD be two lines having no intersection neither inside nor on the
boundary of the hyperbolic plane. Let lA, lB , lC , and lD be the lines tangent to the disc. A line
orthogonal to AB in the Klein model should pass through the intersection point X = lA ∩ lB .
Similarly, the line orthogonal to CD should pass through Y = lC ∩ lD. There exists a unique
line on (Euclidean plane) through X and Y , it gives the common perpendicular. See on the
diagram:
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10.3. (Right-angled polygons on hyperbolic plane)

(a) Show that a hyperbolic triangle can not have more than 1 right angle.

(b) Show that there are no hyperbolic rectangles (i.e. quadrilaterals with 4 right angles).

(c) In the Klein model, construct a hyperbolic pentagon with 5 right angles.

Solution. (a) Let C be a right-angled vertex of the triangle, without loss of generality (i.e. by
transitivity of isometry group on the points of the model) we may assume that C is the centre of
the disc. The two sides a and b through C will be two orthogonal (in Euclidean sense) diameters.
Now, a hyperbolic line orthogonal to a diameter (in hyperbolic sense) is also orthogonal to it in
Euclidean sense. So if c is orthogonal to a then it will never meet b inside the model, and we
can not get a triangle.

(b) Similarly to above, let a and b be two orthogonal sides meeting at the centre of the disc (say,
a horizontal, b vertical). Then if abcd is a rectangle, c should be horizontal and d vertical. But
it is easy to see that in this case c and d does not form a right angle (d can not pass through the
intersection point X of the tangents to the ends of c as X belongs to (continuation of) b and d
is parallel to b).

(c) Using the same four lines as above (a horizontal diameter, b vertical diameter, c horizontal,
d vertical) we can place c and d far enough from the centre so that c∩d = ∅ in hyperbolic plane.
Then by Question 10.2 there exists a common perpendicular to c and d (and we know how to
construct it):
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