

Assignment 13-14
Starred problems due on Monday, 23 February

13.1. Draw in each of the two conformal models (Poincaré disc and upper half-plane):

- (a) two intersecting lines;
- (b) two parallel lines;
- (c) two ultra-parallel lines;
- (d) infinitely many disjoint (hyperbolic) half-planes;
- (e) a circle tangent to a line.

13.2. In the upper half-plane model draw

- (a) a (hyperbolic) line through the points i and $i + 2$;
- (b) a (hyp.) line through $i + 1$ orthogonal to the (hyp.) line represented by the ray $\{ki \mid k > 0\}$;
- (c) a (hyperbolic) circle centred at i (just sketch it, no formula needed!);
- (d) a triangle with all three vertices at the absolute (such a triangle is called *ideal*).

13.3. Prove SSS, ASA and SAS theorems of congruence for triangles on hyperbolic plane.

13.4. Let ABC be a triangle. Let $B_1 \in AB$ and $C_1 \in AC$ be two points such that $\angle AB_1C_1 = \angle ABC$. Show that $\angle AC_1B_1 > \angle ACB$.

13.5. Show that there is no “rectangle” in hyperbolic geometry (i.e. no quadrilateral has four right angles).

13.6. (*) Given an acute-angled polygon P (i.e. a polygon with all angles smaller or equal to $\pi/2$) and lines m and l containing two disjoint sides of P , show that l and m are ultra-parallel.

14.7. Given α, β, γ such that $\alpha + \beta + \gamma < \pi$, show that there exists a hyperbolic triangle with angles α, β, γ .

14.8. Show that there exists a hyperbolic pentagon with five right angles.

14.9. (*) An *ideal* triangle is a hyperbolic triangle with all three vertices on the absolute.

- (a) Show that all ideal triangles are congruent.
- (b) Show that the altitudes of an ideal triangle are concurrent.
- (c) Show that an ideal triangle has an inscribed circle.

14.10. (*) We know that an isometry fixing 3 points of the absolute is the identity map. How many isometries fix two points of the absolute? Classify the isometries fixing 0 and ∞ in the upper half-plane model.

14.11. (a) Show that the group of isometries of hyperbolic plane is generated by reflections.
 (b) How many reflections do you need to map a triangle ABC to a congruent triangle $A'B'C'$?

14.12. (*)

- (a) Does there exist a regular triangle with all vertices in the hyperbolic plane (not lying at the absolute)?
- (b) Does there exist a right-angled regular polygon in the hyperbolic plane? How many edges does it have (if exists)?

14.13. (a) Show that the angle bisectors in a hyperbolic triangle are concurrent.
 (b) Show that every hyperbolic triangle has an inscribed circle.
 (c) Does every hyperbolic triangle have a circumscribed circle?