Riemannian Geometry

Hints 2

- 1. No extra hints...
- 2. We need to check that for each smooth function f the derivation $\frac{\partial}{\partial x_i}\Big|_p$ acts in the in the same way as the derivation $\sum_{j=1}^n \frac{\partial y_j}{\partial x_i} \frac{\partial}{\partial y_j}\Big|_p$. To do that we consider $f \circ \varphi^{-1} = f \circ \psi^{-1} \circ \psi \circ \varphi^{-1}$ and $f \circ \psi^{-1}$.

Now, $f \circ \psi^{-1} \circ \psi \circ \varphi^{-1}$ is a composition of the two functions $\psi \circ \varphi^{-1} : V_1 \subset \mathbf{R}^n \to V_2 \subset \mathbf{R}^n$ and $f \circ \psi^{-1} : V_2 \subset \mathbf{R}^n \to \mathbf{R}$. This we can differentiate using the chain rule.

- 3. (*)
 - (a) $\gamma'(0)(f) = \frac{d}{dt}\Big|_{t=0} f(\gamma(t)) = \dots$
 - (b) Consider $\varphi \circ \gamma(t) : \mathbf{R} \to \mathbf{R}^2, t \to (\gamma_1(t), \gamma_2(t))$. Write $(\gamma_1(t), \gamma_2(t))$ explicitly and use the chain rule to find $\gamma'(t)$.
- 4. (a) Consider the sphere S^3 as a preimage of the regular value $F^{(-1)}(1)$ for the function $F(w, z) = f(a, b, c, d) = a^2 + b^2 + c^2 + d^2$. Compute $DF_{(1,0)}$.
 - (b) Write the coordinates on \mathbf{C} as $\alpha + i\beta$

For the basis vectors $\frac{\partial}{\partial b}$, $\frac{\partial}{\partial c}$, $\frac{\partial}{\partial d}$ of $T_{(1,0)}S^3$ consider the curves γ_b , γ_c and γ_d such that the directional derivative along these curves coincide with $\frac{\partial}{\partial b}$, $\frac{\partial}{\partial c}$, $\frac{\partial}{\partial d}$. Then consider the image of these curves under the map π and write the directional derivatives along $\pi(\gamma_b)$, $\pi(\gamma_c)$ and $\pi(\gamma_d)$ in the basis $\langle \frac{\partial}{\partial \alpha}, \frac{\partial}{\partial \beta} \rangle$.