Riemannian Geometry

Hints 5

- 1. Differentiate the equation $f(x_1, \ldots, x_n) = a$.
- 2. (*)
 - (a) (c) explicit computation.
 - (d) You need to compute $\frac{\partial}{\partial x_1}$, $\frac{\partial}{\partial x_2}$. Then you will easily compute $\langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle$. Then do the same for $\frac{\partial}{\partial y_1}$, $\frac{\partial}{\partial y_2}$ and compare (for $\langle \frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_1} \rangle$ you will need to do a little bit more work to simplify the expression using basic property of hyperbolic functions).
- 3. To get the equality given in the hint remove the imaginary part from the denominator (i.e. multiply by the conjugate. Then find the differential $Df_A(z'(0))$ and use the hint to check that

$$\langle Df_A(z'(0)), Df_A(z'(0)) \rangle = \langle z'(0), z'(0) \rangle$$

- 4. (a) Find the function $l : [a, b] \to [0, L(c)]$ then calculate its inverse and find the arc length reparametrization by $\gamma = c \circ l^{-1}$.
 - (b) To compute L(c) you need to integrate

$$||c'(t)||_{c(t)} = \sqrt{\frac{1}{\mathrm{Im}(c(t))}} \langle c'(t), c'(t) \rangle = \frac{1}{\mathrm{Im}(c(t))} |c'(t)|,$$

so you need first to find c'(t) and Im(c(t)).

- 5. (a) Use that $d(iy_1, iy_2) = log(y_1/y_2)$ (shown in class).
 - (b) Show that both LHS and RHS are preserved by isometries (for RHS you will need to use that $\text{Im}(f_A(z)) = \text{Im}(z)/|cz+d|^2$).
 - (c) Draw a semicircle (or half-line) s orthogonal to the real axis and passing through z_1 and z_2 . Show that there is an element of of $SL(2, \mathbf{R})$ which takes s to the upper half of the imaginary axis (to do that look at the intersection of s with the real axis: these points need to go to 0 and ∞).
 - (d) Möbius transformations take circles and lines to circles and lines and also preserve angles.