Riemannian Geometry

Hints 7-8

- 1. (*) One may use the following plan:
 - write $X(t) = \sum a_i(t) \frac{\partial}{\partial x_i};$
 - calculate Christoffel symbols;
 - use Γ_{ij}^k to find the action of the covariant derivative $\frac{D}{dt}$ on X;
 - write a system of ODEs using the parallel condition;
 - solve it (you may have sin and cos functions as coefficients, to get rid of them, specialize to their (constant) values on the curve c);
 - find X.
 - translate X into 3-dim expression.

2. Same plan as above (but without the last point).

- 3. (a) Compute the metric and use the formula $\Gamma_{ij}^s = \frac{1}{2} \sum_k g^{sk} (g_{jk,i} + g_{ik,j} g_{ij,k}).$
 - (b) Note that $\gamma'_1(t) = \frac{\partial}{\partial x_1}|_{\gamma_1(t)}$ and compute $\frac{D}{dt}\gamma'_1$ using Christoffel symbols.
 - (c) Similarly, use $\gamma'_2(t) = \frac{\partial}{\partial x_2}|_{\gamma_2(t)}$
- 4. Direct computations.
- 5. (a) (*) Compute invariantly, using the Riemannian property.
 Remark: not every vector field along a curve may have a global extension; an
 - extreme example is the case where c: [a, b] → M is a constant map c(t) = p for all t ∈ [a, b] and X(t) is varying in T_pM.
 (b) Write X, Y with respect to a basis of a coordinate system and do the same compu-
 - (b) Write X, Y with respect to a basis of a coordinate system and do the same computation as in (a) but in coordinates. For this, it is convenient to assume that c([a, b])is contained in the domain of a coordinate chart. But this assumption is not a serious restriction, for otherwise one covers c([a, b]) with a finite sequence of covering coordinate charts and argues locally.