Riemannian Geometry

Hints 9–10

- 1. Look at the corresponding differential equation.
- 2. (*) Follow the same plan as for the First Variation formula of Length:
 - (a) Differentiate E(s) at 0 using Riemannian property of the Levi-Civita connection. Then apply the Symmetry Lemma and use Riemannian property again.
 - (b-d) straightforward.
 - (e-f) as in the proof of Theorem 5.9 and Corollary 5.10.
- 4. Consider $F(s,t) = exp_{c(t)}(sX(t))$.
- 5. (a) Show that $\frac{\partial}{\partial x_i}\Big|_p = v_i$.
 - (b) Write the equation of geodesic $\frac{D}{dt}c' = 0$ in the coordinates.
 - (c) Evaluate the equations obtained at (b) at t = 0; choose vectors $w = e_i$ and $w = e_i + e_j$ to find $\Gamma_{ii}^k(p)$ and $\Gamma_{ij}^k(p)$.