Riemannian Geometry, Michaelmas 2013. Christmas Homework

Starred problems to be sent to Santa Claus by Tuesday, December 24th

Definition. Let (M, g) be a Riemannian manifold. Let $\varphi : U \to V$ be a chart and $A \subseteq U \subseteq M$ be a subset.

A <u>volume</u> of A is defined as follows:

$$Vol(A) = \int_{A} d \ Vol = \int_{\varphi(A)} \sqrt{det(g_{ij})} dx,$$

where g_{ij} is the metric g written in the chart φ .

Example. Find the volume of the rectangle

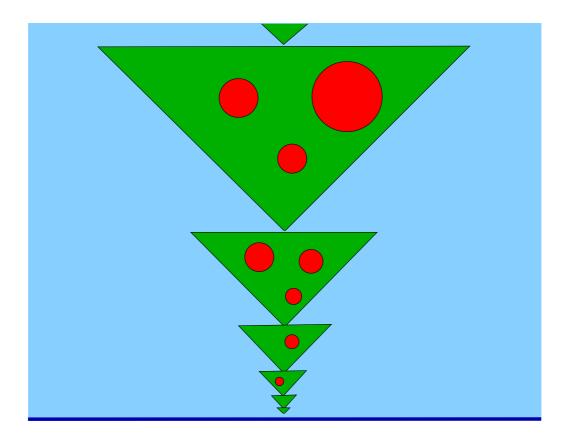
$$A = \{ z = x + iy \in \mathbf{C} \mid c \le x \le d, a \le y \le b \}$$

in the upper half-plane model of hyperbolic plane (\mathbf{H}^2, g) .

Solution. Recall, $\mathbf{H}^2 = \{z \in \mathbf{C} \mid y > 0\}$, and $\langle v, w \rangle_z = \frac{v_1 w_1 + v_2 w_2}{y^2}$. (we are working in one coordinate chart $\varphi(x, y) = (x, y)$). Since $(g_{ij}) = \begin{pmatrix} 1/y^2 & 0\\ 0 & 1/y^2 \end{pmatrix}$, we have $\sqrt{\det(g_{ij})} = \frac{1}{y^2}$. Hence, $Vol(A) = \int_c^d \int_a^b \frac{1}{y^2} dy dx = \int_c^d (\frac{1}{a} - \frac{1}{b}) dx = (d-c)(\frac{1}{a} - \frac{1}{b})$.

Remark:

Note that not all the sides of A are geodesic in hyperbolic metric!



Christmas problems:

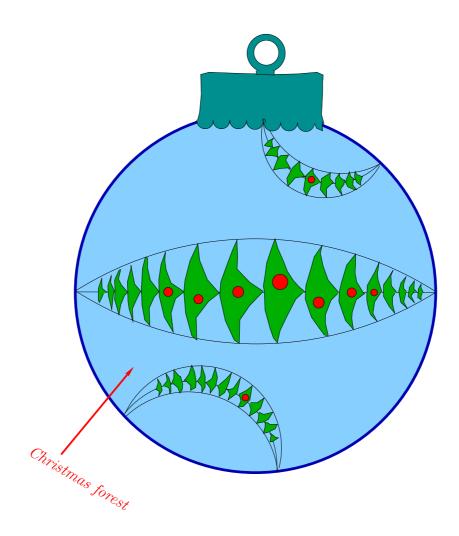
- 1. A <u>Christmas tree</u> on \mathbf{H}^2 is the union of the domains $\Delta_k, k \in \mathbf{Z}$, where Δ_k is a Euclidean right-angled triangle with vertices $2^k i, 2^k (2i-1), 2^k (2i+1)$. (Note, it is not a hyperbolic triangle, its sides are not hyperbolic geodesics!)
 - (a) Prove that $Vol(\Delta_k)$ does not depend on k.
 - (b) Find $Vol(\Delta_k)$.
- 2. (*) Santa Claus (the hyperbolic one) decorates the tree with hyperbolic balls. He wants to arrange the decoration in such a way that the following two conditions are satisfied:
 - i. Each Δ_k contains at least one ball;
 - ii. Volume of the union of all balls is finite.

Can you suggest Santa an example of such a collection of balls?

Remark: A hyperbolic ball of radius r centered at $z \in \mathbf{H}^2$ is the set of points on hyperbolic distance at most r from the point z.

Hints:

- 1. Show that balls centered in the center of the Poincaré disk model \mathbf{B}^2 are Euclidean balls.
- 2. Use the isometry $-i\frac{z+1}{z-1}: \mathbf{B}^2 \to \mathbf{H}^2$ to see that balls centered at $i \in \mathbf{H}^2$ are Euclidean balls. Note that the hyperbolic center of a ball does not coincide with the Euclidean one.
- 3. Use the isometries $z \to z + a$ and $z \to \alpha z$ $(a, \alpha \in \mathbf{R}, \alpha > 0)$ to see that all balls in \mathbf{H}^2 are Euclidean balls.
- 4. Let *B* be a ball centered at the center of the disk model \mathbf{B}^2 . Find the volume of *B* as a function of its Euclidean radius r_E . What is its hyperbolic radius *r*? Find the volume of *B* as a function of its hyperbolic radius *r*.
- 5. Take a family of balls $B_k \in \mathbf{B}^2$ of volume at most $\frac{1}{2^k}$ and use isometries to map these balls into $\Delta_{\pm k}$.
- 6. What is the largest ball which fits into Δ_k ?



Merry Christmas and Happy New Year!