Riemannian Geometry, Michaelmas 2013.

Homework 1

Starred problems due on Friday, October 25th

1. (*) Let M be a differentiable manifold of dimension m and N be a differentiable manifold of dimension n. Show that the cartesian product

 $M \times N := \{(x, y) \mid x \in M, y \in N\}$

is a differentiable manifold of dimension m + n.

2. Let M^n be an *n*-dimensional smooth manifold. Show that there exists an atlas

$$\{(U_i \subseteq M^n, V_i \subseteq \mathbf{R}^n, \phi_i : U_i \to V_i), i \in I\}$$

inducing the same topology on M^n , such that V_i is the open unit ball in \mathbb{R}^n for all $i \in I$.

3. Consider the Lemniscate of Gerono Γ , which is given as a subset of \mathbf{R}^2 by

$$\Gamma = \{ (x, y) \in \mathbf{R}^2 \mid x^4 - x^2 + y^2 = 0 \}.$$

You may google for a picture of this.

We give Γ a topology induced by its inclusion in \mathbf{R}^2 (setting the open subsets of Γ to be exactly those sets $\Gamma \cap U$ where U is an open subset of \mathbf{R}^2). Show that Γ with this topology does not admit the structure of a smooth 1-manifold.

4. For $a \in \mathbf{R}$ define the subset Γ_a of \mathbf{R}^3 by

$$(x, y, z) \in \Gamma_a \iff xyz = a,$$

(and give Γ_a a topology induced by inclusion in \mathbb{R}^3). For which values of a does Γ_a have the structure of a smooth 2-manifold?

- 5. This exercise shows that the matrix group $SL(n, \mathbf{R}) = \{A \in M(n, \mathbf{R}) \mid detA = 1\}$ is a differentiable manifold.
 - (a) Let $f: \mathbf{R}^k \to \mathbf{R}$ be a homogeneous polynomial of degree $m \ge 1$. Prove Euler's relation

$$\langle \operatorname{grad} f(x), x \rangle = m f(x),$$

where

grad
$$f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_k}(x)\right).$$

Hint: Differentiate $\lambda \mapsto f(\lambda x_1, \lambda x_2, \dots, \lambda x_k)$ with respect to λ and use homogeneity.

- (b) Let $f : \mathbf{R}^k \to \mathbf{R}$ be a homogeneous polynomial of degree $m \ge 1$. Show that every value $y \ne 0$ is a regular value of f.
- (c) Use the fact that det A is a homogeneous polynomial in the entries of A in order to show that $SL(n, \mathbf{R})$ is a differentiable manifold.