Riemannian Geometry, Michaelmas 2013. Homework 9–10

No due date for starred problems, unfortunatly...

1. Rescaling Lemma.

Let $c: [0, a] \to M$ be a geodesic, and k > 0. Define a curve γ by

$$\gamma: [0, a/k] \to M, \qquad \gamma(t) = c(kt)$$

Show that γ is geodesic with $\gamma'(t) = kc'(kt)$.

2. (*) First Variation Formula of energy.

Let $F : (-\varepsilon, \varepsilon) \times [a, b] \to M$ be a variation of a differentiable curve $c : [a, b] \to M$ with $c'(t) \neq 0$ for all $t \in [a, b]$ and X be its variational vector field. Let $E : (-\varepsilon, \varepsilon) \to \mathbf{R}_+$ denote the associated energy, i.e.,

$$E(s) = \frac{1}{2} \int_{a}^{b} \|\frac{\partial F}{\partial t}(s,t)\|^{2} dt.$$

(a) Show that

$$E'(0) = \langle X(b), c'(b) \rangle - \langle X(a), c'(a) \rangle - \int_a^b \langle X(t), \frac{D}{dt} c'(t) \rangle dt$$

Simplify the formula for the cases when

- (b) c is a geodesic,
- (c) F is a proper variation,
- (d) c is a geodesic and F is a proper variation.

Let $c : [a, b] \to M$ be a curve connecting p and q (not necessarily parametrized proportional to arc length). Show that

- (e) E'(0) = 0 for every proper variation implies that c is a geodesic.
- (f) Assume that c minimizes the energy amongst all curves $\gamma : [a, b] \to M$ which connect p and q. Then c is a geodesic.

3. Let (M,g) be a Riemannian manifold and $p \in M$. Let $\varepsilon > 0$ be small enough such that

$$\exp_p: B_{\varepsilon}(0_p) \to B_{\varepsilon}(p) \subset M$$

is a diffeomorphism. Let $\gamma : [0,1] \to B_{\varepsilon}(p) \setminus \{p\}$ be any curve. Show that there exist a curve $v : [0,1] \to T_pM$, ||v(s)|| = 1 for all $s \in [0,1]$, and a non-negative function $r : [0,1] \to \mathbf{R}_{\geq 0}$, such that

$$\gamma(s) = \exp_p(r(s)v(s)).$$

4. (*) (Lemma 5.14.) Use the exponential map to show that any vector field along a smooth curve $c(t) : [a, b] \to M$ is a variation vector field of some variation F(s, t). Show that if X(a) = X(b) = 0 then the variation F(s, t) may be chosen among proper veriations.

5. Geodesic normal coordinates.

Let (M, g) be a Riemannian manifold and $p \in M$. Let $\varepsilon > 0$ such that

$$\exp_p: B_\varepsilon(0_p) \to B_\varepsilon(p) \subset M$$

is a diffeomorphism. Let v_1, \ldots, v_n be an orthonormal basis of $T_p M$. Consider a local coordinate chart of M given by $\varphi = (x_1, \ldots, x_n) : B_{\varepsilon}(p) \to V := \{ w \in \mathbb{R}^n \mid ||w|| < \varepsilon \}$ via

$$\varphi^{-1}(x_1,\ldots,x_n) = \exp_p(\sum_{i=1}^n x_i v_i)$$

The coordinate functions x_1, \ldots, x_n of φ are called *geodesic normal coordinates*.

(a) Let g_{ij} be the first fundamental form in terms of the above coordinate system φ . Show that at $p \in M$:

$$g_{ij}(p) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

(b) Let $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$ be arbitrary vector, and $c(t) = \varphi^{-1}(tw)$. Explain why c(t) is a geodesic and deduce from this fact that

$$\sum_{i,j} w_i w_j \Gamma_{ij}^k(c(t)) = 0,$$

for all $1 \leq k \leq n$.

(c) Derive from (b) that all Christoffel symbols Γ_{ij}^k of the chart φ vanish at the point $p \in M$.