
Riemannian Geometry, Michaelmas 2013.

Term 1: outline

1 Smooth manifolds

“Smooth” means “infinitely differentiable”, C∞.

Definition 1.1. Let M be a set. An n-dimensional smooth atlas on M is a collection of triples (Uα, Vα, ϕα),
where α ∈ I for some indexing set I, s.t.

0. Uα ⊆M ; Vα ⊆ Rn is open;

1.
⋃
α∈I Uα = M ;

2. Each ϕα : Uα → Vα is a bijection;

3. The composition ϕβ ◦ ϕ−1α |ϕα(Uα∩β): ϕα(Uα∩β) → ϕβ(Uα∩β) is a smooth map for all ordered pairs
(α, β), where α, β ∈ I.

The number n is called the dimension of M , the maps ϕα are called coordinate charts, the compositions
ϕβ ◦ ϕ−1α are called transition maps or change of coordinates.

Definition 1.2. M is called a smooth n-dimensional manifold if

1. M has an n-dimensional smooth atlas;

2. M is Hausdorff (see Def. 1.4 below);

3. M is second-countable (technical condition, we will ignore).

Definition 1.3. Let M have a smooth atlas. We call a set A ⊆M open iff for each α ∈ I the set ϕα(A∩Uα)
is open in Rn. This defines a topology on M .

Definition 1.4. M is called Hausdorff if for each x, y ∈ M , x 6= y there exist open sets Ax and Ay such
that x ∈ Ax, y ∈ Ay and Ax ∩Ay = ∅.

Example 1.6. Examples of smooth manifolds: sphere, torus, Klein bottle, 3-torus, real projective space.

Definition 1.7. Let f : Mm → Nn be a map of smooth manifolds with atlases (Ui, ϕi(Ui), ϕi)i∈I and
(Uj , ψj(Uj), ψj)j∈J . The map f is smooth if it induces smooth maps between the open sets in Rm and Rn,
i.e. if ψj ◦ f ◦ ϕ−1i |ϕi(f−1(Vj∩f(Ui))) is smooth for all i ∈ I, j ∈ J .

If f is a bijection and both f and f−1 are smooth then f is called a diffeomorphism.

Definition 1.8. Let U ⊆ Rn be open, m < n and f : U → Rm be a smooth map. Let Df |x= ( ∂fi∂xj
) be the

matrix of partials at x ∈ U (differential). Then

• x ∈ Rn is a regular point of f if rk(Df |x) = m;

• y ∈ Rm is a regular value of f if f−1({y}) consists of regular points only.

Theorem 1.9. (Implicit Function Theorem).
If y ∈ f(U) is a regular value of f then f−1(y) is an (n−m)-dimensional smooth manifold.

Examples 1.10-1.11. An ellipsoid is a smooth manifold. Matrix groups are smooth manifolds.

Definition 1.12. A Lie group is a smooth manifold G together with a group operation

G×G→ G s.t. the maps (g1, g2)→ g1 · g2 and g → g−1 are smooth.
In particular, all matrix groups are Lie groups.
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2 Tangent space

Definition 2.1. Let M be a smooth manifold, p ∈ M . Then C∞(M,p) is a set of all smooth functions on
M defined in a neighbourhood of p.

Definition 2.2. A derivation on C∞(M,p) is a linear map δ : C∞(M,p)→ R, s.t.
for all f, g ∈ C∞(M,p) holds δ(f · g) = f(p)δ(g) + δ(f)g(p) (the Leibniz rule).
Denote by D∞(M,p) the set of all derivations. Check that it is a real vector space.

Definition 2.3. The set D∞(M,p) is called the tangent space of M at p, denoted TpM .

Definition 2.4. Let γ : (a, b) → M be a smooth curve in M , γ(t0) = p and f ∈ C∞(M,p). Define the
directional derivative of f at p along γ by γ′(t0)(f) ∈ R:

γ′(t0)(f) = lim
s→0

f(γ(t0 + s))− f(γ(t0))

s
= (f ◦ γ)′(t0) =

d

dt

∣∣
t=t0

(f ◦ γ)

Check that the directional derivatives satisfy the properties of derivations.

Remark. Two curves γ1 and γ2 through p define the same directional derivative iff they have the same
direction and the same speed at p.

Notation. Let Mn be a manifold, ϕ : U → V ⊆ Rn a chart at p ∈ U ⊂ M . For i = 1, . . . , n define the
curves γi(t) = ϕ−1(ϕ(p) + eit) for small t > 0 (here ei is a basis of Rn).

Def. 2.5. ∂
∂xi

∣∣
p

:= γ′i(0), i.e.

∂

∂xi

∣∣
p
(f) = (f ◦ γi)′(0) =

d

dt
(f ◦ ϕ−1)(ϕ(p) + tei)

∣∣
t=0

=
∂

∂xi
(f ◦ ϕ−1)(ϕ(p))

( ∂
∂xi

on the right is just a classical partial derivative).

Proposition 2.6. 〈 ∂
∂x1

, . . . , ∂
∂xn
〉 = {Directional Derivatives} = D∞(M,p).

Lemma 2.7. Let ϕ : U ⊆M → Rn be a chart, ϕ(p) = 0. Let γ̃(t) =
∑n
i=1(kitei) ∈ Rn be a curve (straight

ray), where 〈e1, . . . , en〉 is a basis. Let γ(t) = ϕ−1(t) ∈M , p ∈ γ(0). Then γ′(0) =
∑n
i=1 ki

∂
∂xi

.

Example 2.8. For the group SL(n,R) = {A ∈ Mn | detA = 1}, the tangent space at I is the set of all
trace-free matrices: TI(SL(n,R)) = {X ∈Mn(R) | trX = 0}.

Proposition 2.9. (Change of basis for TpM). Let Mn be a smooth manifold, ϕα : Uα → Vα a chart,

(xα1 , . . . , x
α
n) the coordinates in Vα. Then ∂

∂xαj
|p=

∑n
i=1

∂xβi
∂xαj

∂
∂xαi

.

Definition 2.10. Let M,N be smooth manifolds, let f : M → N be a smooth map. Define a linear map
Df(p) : TpM → Tf(p)N called the differential of f at p by Df(p)γ′(0) = (f ◦γ)′(0) for a smooth curve γ ∈M
with γ(0) = p.

Lemma 2.11. (a) D(id)(p) : TpM
I→ TpM ;

(b) for M
g→ N

f→ L holds D(g ◦ f)
∣∣
p

= Dg
∣∣
f(p)
◦Df

∣∣
p
.

Tangent bundle and vector fields

Definition 2.13. Let M be a smooth manifold. A disjoint union TM = ∪p∈MTpM of tangent spaces to
each p ∈M is called a tangent bundle.
There is a map Π : TM →M (called projection), Π(v) = p if v ∈ TpM .

Proposition 2.14. The tangent bundle TM if Mn has a structure of 2n-dimensional smooth manifold and
Π : TM →M is a smooth map.

Definition 2.15. A vector field X is a “section” of the tangent bundle, that is a smooth map X : M → TM
such that Π ◦X = idM is an identity map on M .
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The set of all vector fields on M is denoted X(M). This set has a structure of a vector space.

Remark 2.16. Taking a coordinate chart (U,ϕ = (x1, . . . , xn))) we can write any vector field X |U as
X(p) =

∑n
i=1 fi(p)

∂
∂xi
∈ TpM .

Examples 2.17-2.18: vector fields on the torus and 3-sphere.

Remark 2.19. Since for X ∈ X(M) we have Xp ∈ TpM which is a directional derivative at p ∈M , we can

use the vector field to differentiate a function f ∈ C∞(M), f : M → R by (Xf)(p) = X(p)f =
∑
ai(p)

∂f
∂xi

∣∣
p
,

so that we get another smooth function Xf ∈ C∞(M).

Proposition 2.20. Let X,Y ∈ X(M). Then there exists a unique vector field Z ∈ X(M) such that
Z(f) = X(Y (f))− Y (X(f)) for all f ∈ C∞(M).

This vector field Z(f) = X(Y (f))− Y (X(f)) is denoted [X,Y ] and called the Lie bracket.

Proposition 2.21. Properties of the Lie bracket:

a. [X,Y ] = −[Y,X];

b. [aX + bY, Z] = a[X,Z] + b[Y,Z] for a, b ∈ R;

c. [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 (Jacobi identity);

d. [fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X for f, g ∈ C∞(M).

Definition 2.22. A Lie algebra is a vector space g with a binary operation [·, ·] : g × g → g called the Lie
bracket which satisfies properties a,b,c of Proposition 2.21.
In other words, X(M) is a Lie algebra.

Theorem 2.23. (The Hairy Ball Theorem).
There is no non-vanishing continuous vector field on an even-dimensional sphere S2m.

3 Riemannian metric

Definition 3.1. Let M be a smooth manifold. A Riemannian metric written gp(·, ·) or 〈·, ·〉p is a family of
real inner products gp : TpM × TpM → R depending smoothly on p ∈M .
A smooth manifold M with a Reimannian metric g is called a Riemannian manifold (M, g).

Examples 3.2–3.3. Euclidean metric in Rn, induced metric on M ∈ Rn.

Definition 3.4. Let (M, g) be a Riemannian manifold. For v ∈ TpM define the length of v by 0 ≤ ||v||g =√
gp(v, v).

Suppose c : [a, b]→M is a smooth curve on M . Define the length of c by L(c) =
∫ b
a
||c′(t)||dt.

(this does not depend on parametrization, see Theorem 3.10).

Remark 3.5. Let M ∈ Rn be a smooth manifold given by f(x1, . . . , xn) = a. Let p ∈M , v ∈ TpM . Then

v satisfies
∑n
i=1

∂f
∂xi

vi = 0.

Example 3.6. three models of hyperbolic geometry:

model notation M g

Hyperboloid Wn {y ∈ Rn+1 | q(y, y) = −1, yn+1 > 0}
where q(x, y) =

∑n
i=1 xiyi − xn+1yn+1

〈v, w〉 = q(v, w)

Poincaré ball Bn {x ∈ Rn | ||x||2 =
n∑
i=1

x2i < 1} gx(v, w) = 4
(1−||x||2)2 〈v, w〉

Upper half-space Hn {x ∈ Rn | xn > 1} gx(v, w) = 1
x2
n
〈v, w〉

Definition 3.7. Given two vector spaces V1, V2 with real inner products (Vi, 〈·, ·〉i) we call a linear isomor-
phism T : V1 → V2 a linear isometry if 〈Tv, Tw〉2 = 〈v, w〉1 for all v, w ∈ V1.

This is equivalent to preservation of the lengths of all vectors since 〈v, w〉 = 1
2 (〈v+w, v+w〉−〈v, v〉−〈w,w〉).
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A diffeomorphism f : (M, g)→ (N,h) of two Riemannian manifolds is an isometry if DF (p) : TpM → Tf(p)N
is a linear isometry for all p ∈M .

Example 3.9. Isometry f : H2 → B2 given by f(z) = z−i
z+i .

Theorem 3.10. (Reparametrization). Let ϕ : [c, d] → [a, b] be a strictly monotonic smooth function,
γ : [a, b]→M a smooth curve. Then for c̃ = c ◦ ϕ : [c, d]→M (reparametrization of c) holds L(c) = L(c̃).

Definition 3.11. A differentiable curve c : [a, b]→M is called an arc-length parametrization if ||c′(t)|| = 1.

Every curve has an arc-length parametrization c̃(t) : [0, L(c|[a,b])] → M , c̃(t) = c ◦ ϕ(t), where ϕ−1(t) =
L(c|[a,t]).

Example 3.12. Length of vertical segments in H. Vertical half-lines are geodesics.

Definition 3.13. Define a distance d : M ×M → [0,∞) by d(p, q) = infγ{L(γ)}, where γ is a smooth
curve with end p and q.
A curve c(t) : [a, b]→M is geodesic if d(c(x), c(y)) = L(c|[x,y]) for all x, y ∈ [a, b] (x < y).

Remark 3.14. d turns (M, g) into a metric space.

Definition 3.15. If (X, d) is a metric space then any subset A ∈ X is also a metric space with the induced
metric d|A×A : A× S → [0,∞).

Example 3.16 Punctured Riemannian sphere: Rn with gx(v, w) = 4
(1+||x||2)2 〈v, w〉.

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1 In Rn, given a vector field X =
∑
ai(p)

∂
∂xi
∈ X(Rn) and a vector v ∈ TpR

n define the

covariant derivative of X in direction v by ∇v(X) = lim
t→0

X(p+tv)−X(p)
t =

∑
v(ai)

∂
∂xi

∣∣
p
∈ TpRn.

Properties 4.2. In Rn, the covariant derivative∇vX satisfies properties (a)-(e) listed below in Definition 4.3
and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map ∇ : X(M) × X(M) → X(M), X,Y∇XY is called a
covariant derivative or affine connection if for all X,Y, Z ∈ X(M) and f, g ∈ C∞(M) holds

(a) ∇X(Y + Z) = ∇X(Y ) +∇X(Z)

(b) ∇X(fY ) = X(f)Y (p) + f(p)∇XY

(c) ∇fX+gY Z = f∇XZ + g∇Y Z

Theorem 4.4. (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian
manifold. There exists a unique covariant derivative ∇ on M with the additional properties for all X,Y, Z ∈
X(M):

(d) v(〈X,Y 〉) = 〈∇vX,Y 〉+ 〈X,∇vY 〉 (Riemannian property);

(e) ∇XY −∇YX = [X,Y ] (Torsion-free)

This connection is called Levi-Civita connection of (M, g).

Example 4.5. Levi-Civita connection in Rn and in M ⊂ Rn with induced metric.
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4.2 Christoffel symbols

Definition 4.6. Let ∇ be a Levi-Civita connection on (M, g) and ϕ : U → V a coordinate chart with
coordinates ϕ = (x1, . . . , xn). Then we have ∇ ∂

∂xi

∂
∂xj

(p) ∈ TpM . i.e. there exist uniquely determined

Γkij ∈ C∞(U) with ∇ ∂
∂xi

∂
∂xj

(p) =
∑n
k=1 Γkij

∂
∂xk

(p). These functions are called Christoffel symbols of ∇ with

respect to the chart ϕ.

They characterize ∇ since ∇ n∑
i=1

ai
∂
∂xi

n∑
j=1

bj
∂
∂xj

=
∑
i,j

ai
∂bj
∂xi

∂
∂xj

+
∑
i,j,k

aibjΓ
k
i,j

∂
∂xk

.

Proposition 4.7. Γsij = 1
2

∑
k

gks(gik,j + gjk,i − gij,k), where gab,c = ∂
∂xc

gab and (gij) = (gij)
−1.

In particular, Γkij = Γkji.

Example 4.8. In Rn, Γkij ≡ 0 for all i, j, k; Γkij in S2 ⊂ R3 with induced metric.

4.3 Parallel transport

Definition 4.9. Let c : (a, b)→ M be a differentiable curve. A map X : (a, b)→ TM with X(t) ∈ Tc(t)M
is called a vector field along c. Denote the space of all these maps by Xc(M).

Example 4.10. c′(t) ∈ Xc(M).

Proposition 4.11. Let (M, g) be a Riemannian manifold, ∇ be a Levi-Civita connection, c : (a, b) → M
be a differentiable curve. There exists a unique map D

dt : Xc(M)→ Xc(M) satisfying

(a) D
dt (X + Y ) = D

dtX + D
dtY

(b) D
dt (fX) = f ′(t)X + f DdtX, for all differentiable f : (a, b)→ R

(c) If X̃ ∈ X(M) is a local extension of X

(i.e. there exists t0 ∈ (a, b) and ε > 0 such that X(t) = X̃
∣∣
c(t)

for all t ∈ (t0 − ε, t0 + ε))

then (DdtX)(t0) = ∇c′(t0)X̃.

This map D
dt : Xc(M)→ Xc(M) is called the covariant derivative along the curve c.

Example 4.12. For a surface M ∈ R3 the condition D
dt (c

′(t)) ≡ 0 is equivalent to c′′(t) ⊥ Tc(t)M , which is
in its turn the condition for c to be geodesic known from the course of Differential Geometry.

Definition 4.13. Let X ∈ Xc(M). If D
dtX = 0 then X is said to be parallel along c.

Example 4.14. In Rn it means that X does not depend on the point p ∈ Rn.

Theorem 4.15. Let c : [a, b] → M be a smooth curve, v ∈ Tc(a)M . Then there exists a unique vector field
X ∈ Xc(M) with X(a) = v ∈ Tc(a)M .

Example 4.16. Parallel vector fields form a vector space of dimension n (for n-dimensional (M, g)).

Definition 4.17. Let c : [a, b] → M be a smooth curve, A linear map Pc : Tc(a)M → Tc(b)M called

parallel transport defined by Pc(v) = X(b) where X ∈ Xc(M) with X(a) = v, D
dtX = 0.

Remark. (a) The parallel transport Pc depend on the curve c (not only on its endpoints).
(b) The parallel transport is a linear isometry Pc : Tc(a)M → Tc(b)M , i.e. gc(a)(v, w) = gc(b)(Pcv, Pcw).
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5 Geodesics

5.1 Geodesics as solutions to ODEs

Definition 5.1. Given (M, g), the curve c : [a, b]→M is a geodesic if D
dtc
′(t) = 0 for all t ∈ [a, b].

Lemma 5.2. If c is a geodesic that c is parametrized proportional to the arc length.

Theorem 5.3. Given a Riemannian manifold (M, g), p ∈ M , v ∈ TpM , there exists ε > 0 and a unique
geodesic c : (−ε, ε)→M such that c(0) = p, c′(0) = v.

Example 5.4–5.5. Geodesics in Euclidean space, on a sphere, and in the upper half-plane model H2.

Remark. Differential equations for geodesics: c′′k(t) = −
∑
ij c
′
i(t)c

′
j(t)Γ

k
ij(c(t)), k = 1, . . . , n.

5.2 Geodesics as distance-minimizing curves.
First variation formula of the length.

Definition 5.6. Let c : [a, b] → M be a smooth curve. A smooth map F : (−ε, ε) × [a, b] → M is a
differentiable variation of c if F (0, t) = c(t).
Variation is proper if F (s, a) = c(a) and F (s, b) = c(b) for all s ∈ (−ε, ε).
Variation may be considered as a family of the curves Fs(t) = F (s, t).

Definition 5.7. A variation vector field X of the variation F is defined by X(t) = ∂F
∂s (0, t).

Definition 5.8. The length and energy of variation are

l(s) :=
b∫
a

||∂F∂t (s, t)||dt, l : (−ε, ε)→ [0,∞); E(s) :=
b∫
a

||∂F∂t (s, t)||2dt, E : (−ε, ε)→ [0,∞).

Remark: l(s) is the length of the curve Fs(t).

Theorem 5.9. A smooth curve c is geodesic if and only if l′(0) = 0 for each proper variation and c is
parametrized proportionally to the arc length.

Corollary 5.10. Let c : [a, b] → M be the shortest curve from c(a) to c(b), and c is parametrized propor-
tionally to the arc length. Then c is geodesic.

Lemma 5.11. (Symmetry Lemma). Let W ⊂ R2 be an open set and F : W →M , (s, t) 7→ F (s, t) be a
differentiable map. Let D

dt be the covariant derivative along Fs(t) and D
ds be the covariant derivative along

Ft(s). Then D
dt
∂F
∂s = D

ds
∂F
∂t .

Theorem 5.12. (First variation formula of the length). Let F : (−ε, ε) × [a, b] → M be a variation
of c(t), c′(t) 6= 0. Let X(t) be its variation vector field and l : (−ε, ε)→ [0,∞) its length. Then

l′(0) =

∫ b

a

1

||c′(t)||
d

dt
〈X(t), c′(t)〉dt−

∫ b

a

1

||c′(t)||
〈X(t),

D

dt
c′(t)〉dt.

Corollary 5.13.

• If in addition c(t) is parametrized proportionally to the arc length, ||c′(t)|| ≡ c
then l′(0) = 1

c 〈X(b), c′(b)〉 − 1
c 〈X(a), c′(a)〉 − 1

c

∫ b
a
〈X(t), Ddtc

′(t)〉dt;

• if c(t) is geodesic, then l′(0) = 1
c 〈X(b), c′(b)〉 − 1

c 〈X(a), c′(a)〉;

• if F is proper and c is parametrised proportionally to the arc length, then l′(0) = − 1
c

∫ b
a
〈X(t), Ddtc

′(t)〉dt;

• if F is proper and c is geodesic, then l′(0) = 0.

Lemma 5.14. Any vector field X along c(t) with X(a) = X(b) = 0 is a variation vector field for some
proper variation F .
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5.3 Exponential map and Gauss Lemma

Let p ∈M , v ∈ TpM . Denote by cv(t) the unique maximal (by inclusion) geodesic with cv(0) = p, c′v(0) = v.

Definition 5.15. If cv(1) exists, define expp : TpM →M by v 7→ cv(1), the exponential map at p.

Example 5.16. Exponential map on the sphere S2: length of cv from p to cv(1) equals to ||v||.

Notation. Br(Op) = {v ∈ TpM
∣∣ ||v|| < r} ⊂ TpM is a ball of radius r centered at p = Op.

Proposition 5.17. (without proof).
For any p ∈ (M, g) there exists an r > 0 such that expp : Br(Op)→ expp(Br(Op)) is a diffeomorphism.

Example. On S2 the set expp(Bπ/2(Op)) is a hemisphere, so that every geodesic starting from p is orthogonal
to the boundary of this set.

Theorem 5.18. (Gauss Lemma). Let (M, g) be a Riemannian manifold, p ∈ M and let ε > 0 be such
that expp : Bε(Op)→ expp(Bε(Op)) is a diffeomorphism. Define a hypersurface Aδ := {expp(w) | ||w|| = δ}
for all 0 < δ < ε. Then every radial geodesic c : t→ expp(tv), t ≥ 0 is orthogonal to Aδ.

Remark 5.19. The curve cv(t) = expp(tv) is indeed a geodesic!

Lemma 5.19. Let p ∈ M and let ε > 0 be such that expp : Bε(Op) → expp(Bε(Op)) is a diffeomorphism.
Take γ : [0, 1] → expp(Bε(Op)). Then there exists a curve v(s) : [0, 1] → Tp(M), ||v(s)|| = 1 and a
non-negative function r(s) : [0, 1]→ R+ such that γ(s) = expp(r(s) · v(s)).

Lemma 5.20. Let r : [0, 1]→ R, v : [0, 1]→ SpM = w ∈ TpM | ||w|| = 1}. Define γ : [0, 1]→ expp(Bε(Op))
by γ(s) = expp(r(s)v(s)). Then l(γ) ≥ |r(1) − r(0)| for the length l(γ) of γ and the equality holds if and
only if γ is a reparametrisation of a radial geodesic (i.e. if and only if v(s) ≡ const = v(0), r(s) is increasing
or decreasing function).

Corollary 5.21. Given a point p ∈M , there exists ε > 0 such that for any q ∈ Bε(Op) there exists a curve
c(t) connecting p and q and satisfying l(c) = d(p, q). (This curve is a radial geodesic).

Notation. Denote Bε(p) := expp(Bε(Op)) ⊂M , a geodesic ball and Sε(p) = ∂Bε(p), a geodesic sphere.
Note, Bε(p) = {q ∈M | d(p, q) ≤ ε}.

Proposition 5.22. (without proof). Let p ∈ M . Then there exists an open set Up, p ∈ U and an ε such
that for any q ∈ U the map expq : Bε(Oq)→ Bε(q) are diffeomorphisms.

Remark 5.23. (Naturality of exponential map).
Let ϕ : (M, g)→ (N,h) be an isometry. Then Dϕ = exp−1ϕ(p) ◦ ϕ ◦ expp.

5.4 Hopf-Rinow Theorem

Definition 5.24. A geodesic c : [a, b]→M is minimal if l(c) = d(c(a), c(b)).
A geodesic c : R→M is minimal if its restriction c|[a,b] is minimal for each segment [a, b] ∈ R.

Example: no minimal geodesics on S2, all geodesics are minimal in E2 and H2.

Definition 5.25. A Riemannian manifold (M, g) is geodesically complete if every geodesic c : [a, b] → M
can be extended to a geodesic c̃ : R→M (i.e. can be extended infinitely in both directions).
Equivalently: if expp is defined on TpM for all p ∈M .

Theorem 5.26. (Hopf-Rinow) Let (M, g) be a connected Riemannian manifold with metric g. Then the
following conditions are equivalent:

(a) (M, g) is complete (i.e. every Cauchy sequence converges);

(b) every closed and bounded subset is compact

(c) (M, g) is geodesically complete.

Moreover, every of the conditions above imply

(d) for every p, q ∈M there exists a minimal geodesic connecting p and q.
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Remark. Theorem 5.24 uses the following notions defined in a metric space:

• {xi}, xi ∈M is a Cauchy sequence if ∀ε ∃N : ∀m,n > N d(xm, xn) < ε;

• a set A ⊂M is bounded if A ⊂ Br(p) for some r > 0, p ∈M ;

• a set A ⊂M is closed if {xn ∈ A, xn → x} ⇒ x ∈ A;

• a set A ⊂M is compact if each open cover has a finite subcover;

• a set A ⊂M is sequentially compact if each sequence has a converging subsequence.

Some properties: 1. A compact set is sequentially compact, bounded, closed.
2. A compact metric space is complete.
3. In a complete metric space, a sequentially compact set is compact.

6 Integration on Riemannian manifolds

Definition 6.1 Let (M, g) be a Riemannian manifold and f : M → R be a function with supp(f) ⊂ U ,
where ϕ : U → V is a coordinate chart, ϕ = (x1, . . . , xn). Then define∫

M

f =

∫
M

fd Vol =

∫
U

fd Vol =

∫
V

f ◦ ϕ−1(x)
√
det(gij) ◦ ϕ−1(x)dx,

where gij(p) = 〈 ∂∂xi |p,
∂
∂xj
|p〉 for all p ∈ U .

Proposition 6.2. Definition 6.1 does not depend on the choice of coordinates.

Definition 6.3. A volume of a subset A ⊂ U ⊂M is defined by

VolA =

∫
M

1A d V ol =

∫
A

d Vol =

∫
ϕ(A)

√
det(gij) ◦ ϕ−1(x)dx,

where 1A : M → {0, 1}, 1A(p) = 1 if p ∈ A and 0 otherwise.

Example 6.4. Integration on H2.

Definition 6.5. A partition of unity is a set of smooth functions ϕα : M → [0, 1] such that
∑
α ϕα(p) = 1

∀p ∈ M and for every p ∈ M there exists an open set Up, p ∈ Up such that for all but finitely many of α
holds ϕα|Up ≡ 0.

Definition 6.6. Given an open cover {Uα} of M , the set of functions {ϕα} subordinates to {Uα}
if supp ϕα ⊂ Uα for all α.

Fact 6.7. For any countable atlas Uα there exists a partition of unity which subordinates to {Uα}.

Corollary 6.8. For a Riemannian manifold M with countable atlas and subordinate partition of unity {ϕα}
one has

∫
M
fd Vol =

∑
α

∫
Uα
f · ϕαd Vol.

Remark 6.9. In practice, one chooses (if possible) a chart U ⊂M such that Vol(M \ U) = 0,
then

∫
M
f d Vol =

∫
U
f d Vol.

Remark 6.10. Isometries preserve the volume,
i.e. if ψ : (M, g)→ (N,h) is an isometry then

∫
N
f d Vol =

∫
M
f ◦ ψ d Vol.
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