Riemannian Geometry, Michaelmas 2013. Term 1: outline

1 Smooth manifolds

"Smooth" means "infinitely differentiable", C^{∞} .

Definition 1.1. Let M be a set. An <u>*n*-dimensional smooth atlas</u> on M is a collection of triples $(U_{\alpha}, V_{\alpha}, \varphi_{\alpha})$, where $\alpha \in I$ for some indexing set I, s.t.

- 0. $U_{\alpha} \subseteq M$; $V_{\alpha} \subseteq \mathbf{R}^n$ is open;
- 1. $\bigcup_{\alpha \in I} U_{\alpha} = M;$
- 2. Each $\varphi_{\alpha}: U_{\alpha} \to V_{\alpha}$ is a bijection;
- 3. The composition $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \mid_{\varphi_{\alpha}(U_{\alpha} \cap_{\beta})} : \varphi_{\alpha}(U_{\alpha} \cap_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap_{\beta})$ is a smooth map for all ordered pairs (α, β) , where $\alpha, \beta \in I$.

The number n is called the dimension of M, the maps φ_{α} are called coordinate charts, the compositions $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ are called transition maps or change of coordinates.

Definition 1.2. *M* is called a smooth *n*-dimensional manifold if

- 1. M has an n-dimensional smooth atlas;
- 2. *M* is Hausdorff (see Def. 1.4 below);
- 3. M is second-countable (technical condition, we will ignore).

Definition 1.3. Let M have a smooth atlas. We call a set $A \subseteq M$ open iff for each $\alpha \in I$ the set $\varphi_{\alpha}(A \cap U_{\alpha})$ is open in \mathbb{R}^n . This defines a topology on M.

Definition 1.4. M is called Hausdorff if for each $x, y \in M$, $x \neq y$ there exist open sets A_x and A_y such that $x \in A_x$, $y \in A_y$ and $A_x \cap A_y = \emptyset$.

Example 1.6. Examples of smooth manifolds: sphere, torus, Klein bottle, 3-torus, real projective space.

Definition 1.7. Let $f: M^m \to N^n$ be a map of smooth manifolds with atlases $(U_i, \varphi_i(U_i), \varphi_i)_{i \in I}$ and $(U_j, \psi_j(U_j), \psi_j)_{j \in J}$. The map f is <u>smooth</u> if it induces smooth maps between the open sets in \mathbb{R}^m and \mathbb{R}^n , i.e. if $\psi_j \circ f \circ \varphi_i^{-1} |_{\varphi_i(f^{-1}(V_j \cap f(U_i)))}$ is smooth for all $i \in I, j \in J$. If f is a bijection and both f and f^{-1} are smooth then f is called a diffeomorphism.

Definition 1.8. Let $U \subseteq \mathbf{R}^n$ be open, m < n and $f: U \to \mathbf{R}^m$ be a smooth map. Let $Df|_x = (\frac{\partial f_i}{\partial x_i})$ be the matrix of partials at $x \in U$ (differential). Then

- $x \in \mathbf{R}^n$ is a regular point of f if $rk(Df|_x) = m$;
- $y \in \mathbf{R}^m$ is a regular value of f if $f^{-1}(\{y\})$ consists of regular points only.

Theorem 1.9. (Implicit Function Theorem).

If $y \in f(U)$ is a regular value of f then $f^{-1}(y)$ is an (n-m)-dimensional smooth manifold.

Examples 1.10-1.11. An ellipsoid is a smooth manifold. Matrix groups are smooth manifolds.

Definition 1.12. A Lie group is a smooth manifold G together with a group operation s.t. the maps $(g_1, g_2) \rightarrow g_1 \cdot g_2$ and $g \rightarrow g^{-1}$ are smooth. $G \times G \to G$ In particular, all matrix groups are Lie groups.

2 Tangent space

Definition 2.1. Let M be a smooth manifold, $p \in M$. Then $C^{\infty}(M, p)$ is a set of all smooth functions on M defined in a neighbourhood of p.

Definition 2.2. A <u>derivation</u> on $C^{\infty}(M, p)$ is a linear map $\delta : C^{\infty}(M, p) \to \mathbf{R}$, s.t. for all $f, g \in C^{\infty}(M, p)$ holds $\delta(f \cdot g) = f(p)\delta(g) + \delta(f)g(p)$ (the <u>Leibniz rule</u>). Denote by $\mathcal{D}^{\infty}(M, p)$ the set of all derivations. Check that it is a real vector space.

Definition 2.3. The set $\mathcal{D}^{\infty}(M, p)$ is called the tangent space of M at p, denoted T_pM .

Definition 2.4. Let $\gamma : (a, b) \to M$ be a smooth curve in M, $\gamma(t_0) = p$ and $f \in C^{\infty}(M, p)$. Define the <u>directional derivative</u> of f at p along γ by $\gamma'(t_0)(f) \in \mathbf{R}$:

$$\gamma'(t_0)(f) = \lim_{s \to 0} \frac{f(\gamma(t_0 + s)) - f(\gamma(t_0))}{s} = (f \circ \gamma)'(t_0) = \frac{d}{dt}\Big|_{t=t_0} (f \circ \gamma)$$

Check that the directional derivatives satisfy the properties of derivations.

Remark. Two curves γ_1 and γ_2 through p define the same directional derivative iff they have the same direction and the same speed at p.

Notation. Let M^n be a manifold, $\varphi : U \to V \subseteq \mathbf{R}^n$ a chart at $p \in U \subset M$. For i = 1, ..., n define the curves $\gamma_i(t) = \varphi^{-1}(\varphi(p) + e_i t)$ for small t > 0 (here e_i is a basis of \mathbf{R}^n).

Def. 2.5.
$$\frac{\partial}{\partial x_i}\Big|_p := \gamma'_i(0)$$
, i.e.

$$\frac{\partial}{\partial x_i}\Big|_p(f) = (f \circ \gamma_i)'(0) = \frac{d}{dt}(f \circ \varphi^{-1})(\varphi(p) + te_i)\Big|_{t=0} = \frac{\partial}{\partial x_i}(f \circ \varphi^{-1})(\varphi(p))$$

 $\left(\frac{\partial}{\partial x_i}\right)$ on the right is just a classical partial derivative).

Proposition 2.6. $\langle \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \rangle = \{ \text{Directional Derivatives} \} = \mathcal{D}^{\infty}(M, p).$

Lemma 2.7. Let $\varphi: U \subseteq M \to \mathbf{R}^n$ be a chart, $\varphi(p) = 0$. Let $\tilde{\gamma}(t) = \sum_{i=1}^n (k_i t e_i) \in \mathbf{R}^n$ be a curve (straight ray), where $\langle e_1, \ldots, e_n \rangle$ is a basis. Let $\gamma(t) = \varphi^{-1}(t) \in M$, $p \in \gamma(0)$. Then $\gamma'(0) = \sum_{i=1}^n k_i \frac{\partial}{\partial x_i}$.

Example 2.8. For the group $SL(n, \mathbf{R}) = \{A \in M_n \mid detA = 1\}$, the tangent space at I is the set of all trace-free matrices: $T_I(SL(n, \mathbf{R})) = \{X \in M_n(\mathbf{R}) \mid trX = 0\}$.

Proposition 2.9. (Change of basis for $T_p M$). Let M^n be a smooth manifold, $\varphi_{\alpha} : U_{\alpha} \to V_{\alpha}$ a chart, $(x_1^{\alpha}, \ldots, x_n^{\alpha})$ the coordinates in V_{α} . Then $\frac{\partial}{\partial x_j^{\alpha}} |_p = \sum_{i=1}^n \frac{\partial x_i^{\beta}}{\partial x_i^{\alpha}} \frac{\partial}{\partial x_i^{\alpha}}$.

Definition 2.10. Let M, N be smooth manifolds, let $f : M \to N$ be a smooth map. Define a linear map $Df(p) : T_pM \to T_{f(p)N}$ called the <u>differential</u> of f at p by $Df(p)\gamma'(0) = (f \circ \gamma)'(0)$ for a smooth curve $\gamma \in M$ with $\gamma(0) = p$.

Lemma 2.11. (a) $D(id)(p) : T_pM \xrightarrow{I} T_pM;$ (b) for $M \xrightarrow{g} N \xrightarrow{f} L$ holds $D(g \circ f)|_p = Dg|_{f(p)} \circ Df|_p.$

Tangent bundle and vector fields

Definition 2.13. Let M be a smooth manifold. A disjoint union $TM = \bigcup_{p \in M} T_p M$ of tangent spaces to each $p \in M$ is called a tangent bundle.

There is a map $\Pi: TM \to M$ (called projection), $\Pi(v) = p$ if $v \in T_pM$.

Proposition 2.14. The tangent bundle TM if M^n has a structure of 2n-dimensional smooth manifold and $\Pi: TM \to M$ is a smooth map.

Definition 2.15. A vector field X is a "section" of the tangent bundle, that is a smooth map $X : M \to TM$ such that $\Pi \circ X = id_M$ is an identity map on M.

The set of all vector fields on M is denoted $\mathfrak{X}(M)$. This set has a structure of a vector space.

Remark 2.16. Taking a coordinate chart $(U, \varphi = (x_1, \ldots, x_n))$ we can write any vector field $X \mid_U$ as $X(p) = \sum_{i=1}^n f_i(p) \frac{\partial}{\partial x_i} \in T_p M.$

Examples 2.17-2.18: vector fields on the torus and 3-sphere.

Remark 2.19. Since for $X \in \mathfrak{X}(M)$ we have $X_p \in T_pM$ which is a directional derivative at $p \in M$, we can use the vector field to differentiate a function $f \in C^{\infty}(M)$, $f : M \to \mathbf{R}$ by $(Xf)(p) = X(p)f = \sum a_i(p)\frac{\partial f}{\partial x_i}\Big|_p$, so that we get another smooth function $X_f \in C^{\infty}(M)$.

Proposition 2.20. Let $X, Y \in \mathfrak{X}(M)$. Then there exists a unique vector field $Z \in \mathfrak{X}(M)$ such that Z(f) = X(Y(f)) - Y(X(f)) for all $f \in C^{\infty}(M)$.

This vector field Z(f) = X(Y(f)) - Y(X(f)) is denoted [X, Y] and called the <u>Lie bracket</u>.

Proposition 2.21. Properties of the Lie bracket:

- a. [X, Y] = -[Y, X];
- b. [aX + bY, Z] = a[X, Z] + b[Y, Z] for $a, b \in \mathbf{R}$;
- c. [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0 (Jacobi identity);
- d. [fX, gY] = fg[X, Y] + f(Xg)Y g(Yf)X for $f, g \in C^{\infty}(M)$.

Definition 2.22. A Lie algebra is a vector space \mathfrak{g} with a binary operation $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ called the Lie bracket which satisfies properties a,b,c of Proposition 2.21. In other words, $\mathfrak{X}(M)$ is a Lie algebra.

Theorem 2.23. (The Hairy Ball Theorem).

There is no non-vanishing continuous vector field on an even-dimensional sphere S^{2m} .

3 Riemannian metric

Definition 3.1. Let M be a smooth manifold. A <u>Riemannian metric</u> written $g_p(\cdot, \cdot)$ or $\langle \cdot, \cdot \rangle_p$ is a family of real inner products $g_p: T_pM \times T_pM \to \mathbf{R}$ depending smoothly on $p \in M$.

A smooth manifold M with a Reimannian metric g is called a <u>Riemannian manifold</u> (M, g).

Examples 3.2–3.3. Euclidean metric in \mathbb{R}^n , induced metric on $M \in \mathbb{R}^n$.

Definition 3.4. Let (M, g) be a Riemannian manifold. For $v \in T_p M$ define the length of v by $0 \le ||v||_g = \sqrt{g_p(v, v)}$.

Suppose $c : [a, b] \to M$ is a smooth curve on M. Define the length of c by $L(c) = \int_a^b ||c'(t)|| dt$. (this does not depend on parametrization, see Theorem 3.10).

Remark 3.5. Let $M \in \mathbf{R}^n$ be a smooth manifold given by $f(x_1, \ldots, x_n) = a$. Let $p \in M$, $v \in T_p M$. Then v satisfies $\sum_{i=1}^n \frac{\partial f}{\partial x_i} v_i = 0$.

model	notation	M	g
Hyperboloid	\mathbf{W}^n	$\{y \in \mathbf{R}^{n+1} \mid q(y,y) = -1, y_{n+1} > 0\}$ where $q(x,y) = \sum_{i=1}^{n} x_i y_i - x_{n+1} y_{n+1}$	$\langle v,w\rangle = q(v,w)$
Poincaré ball	\mathbf{B}^n	$\{x \in \mathbf{R}^n \mid x ^2 = \sum_{i=1}^n x_i^2 < 1\}$	$g_x(v,w) = \frac{4}{(1- x ^2)^2} \langle v,w \rangle$
Upper half-space	\mathbf{H}^n	$\{x \in \mathbf{R}^n \mid x_n > 1\}$	$g_x(v,w) = \frac{1}{x_n^2} \langle v,w \rangle$

Example 3.6. three models of hyperbolic geometry:

Definition 3.7. Given two vector spaces V_1, V_2 with real inner products $(V_i, \langle \cdot, \cdot \rangle_i)$ we call a linear isomorphism $T: V_1 \to V_2$ a linear isometry if $\langle Tv, Tw \rangle_2 = \langle v, w \rangle_1$ for all $v, w \in V_1$.

This is equivalent to preservation of the lengths of all vectors since $\langle v, w \rangle = \frac{1}{2}(\langle v+w, v+w \rangle - \langle v, v \rangle - \langle w, w \rangle).$

A diffeomorphism $f: (M, g) \to (N, h)$ of two Riemannian manifolds is an <u>isometry</u> if $DF(p): T_pM \to T_{f(p)N}$ is a linear isometry for all $p \in M$.

Example 3.9. Isometry $f: \mathbf{H}^2 \to \mathbf{B}^2$ given by $f(z) = \frac{z-i}{z+i}$.

Theorem 3.10. (Reparametrization). Let $\varphi : [c,d] \to [a,b]$ be a strictly monotonic smooth function, $\gamma : [a,b] \to M$ a smooth curve. Then for $\tilde{c} = c \circ \varphi : [c,d] \to M$ (reparametrization of c) holds $L(c) = L(\tilde{c})$.

Definition 3.11. A differentiable curve $c : [a, b] \to M$ is called an <u>arc-length</u> parametrization if ||c'(t)|| = 1. Every curve has an arc-length parametrization $\tilde{c}(t) : [0, L(c|_{[a,b]})] \to M, \ \tilde{c}(t) = c \circ \varphi(t)$, where $\varphi^{-1}(t) = L(c|_{[a,t]})$.

Example 3.12. Length of vertical segments in H. Vertical half-lines are geodesics.

Definition 3.13. Define a <u>distance</u> $d: M \times M \to [0, \infty)$ by $d(p,q) = inf_{\gamma}\{L(\gamma)\}$, where γ is a smooth curve with end p and q.

A curve $c(t) : [a, b] \to M$ is geodesic if $d(c(x), c(y)) = L(c|_{[x,y]})$ for all $x, y \in [a, b]$ (x < y).

Remark 3.14. d turns (M, g) into a metric space.

Definition 3.15. If (X, d) is a metric space then any subset $A \in X$ is also a metric space with the induced metric $d|_{A \times A} : A \times S \to [0, \infty)$.

Example 3.16 Punctured Riemannian sphere: \mathbf{R}^n with $g_x(v, w) = \frac{4}{(1+||x||^2)^2} \langle v, w \rangle$.

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1 In \mathbf{R}^n , given a vector field $X = \sum a_i(p) \frac{\partial}{\partial x_i} \in \mathfrak{X}(\mathbf{R}^n)$ and a vector $v \in T_p \mathbf{R}^n$ define the covariant derivative of X in direction v by $\nabla_v(X) = \lim_{t \to 0} \frac{X(p+tv) - X(p)}{t} = \sum v(a_i) \frac{\partial}{\partial x_i} \Big|_p \in T_p \mathbf{R}^n$.

Properties 4.2. In \mathbb{R}^n , the covariant derivative $\nabla_v X$ satisfies properties (a)-(e) listed below in Definition 4.3 and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map $\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M), X, Y \nabla_X Y$ is called a <u>covariant derivative</u> or <u>affine connection</u> if for all $X, Y, Z \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$ holds

- (a) $\nabla_X(Y+Z) = \nabla_X(Y) + \nabla_X(Z)$
- (b) $\nabla_X(fY) = X(f)Y(p) + f(p)\nabla_X Y$
- (c) $\nabla_{fX+gY}Z = f\nabla_X Z + g\nabla_Y Z$

Theorem 4.4. (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian manifold. There exists a unique covariant derivative ∇ on M with the additional properties for all $X, Y, Z \in \mathfrak{X}(M)$:

- (d) $v(\langle X, Y \rangle) = \langle \nabla_v X, Y \rangle + \langle X, \nabla_v Y \rangle$ (Riemannian property);
- (e) $\nabla_X Y \nabla_Y X = [X, Y]$ (Torsion-free)

This connection is called <u>Levi-Civita connection</u> of (M, g).

Example 4.5. Levi-Civita connection in \mathbb{R}^n and in $M \subset \mathbb{R}^n$ with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let ∇ be a Levi-Civita connection on (M, g) and $\varphi : U \to V$ a coordinate chart with coordinates $\varphi = (x_1, \ldots, x_n)$. Then we have $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}(p) \in T_p M$. i.e. there exist uniquely determined $\Gamma_{ij}^k \in C^{\infty}(U)$ with $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}(p) = \sum_{k=1}^n \Gamma_{ij}^k \frac{\partial}{\partial x_k}(p)$. These functions are called <u>Christoffel symbols</u> of ∇ with respect to the chart φ .

They characterize ∇ since $\nabla_{\sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i}} \sum_{j=1}^{n} b_j \frac{\partial}{\partial x_j} = \sum_{i,j} a_i \frac{\partial b_j}{\partial x_i} \frac{\partial}{\partial x_j} + \sum_{i,j,k} a_i b_j \Gamma_{i,j}^k \frac{\partial}{\partial x_k}.$

Proposition 4.7. $\Gamma_{ij}^s = \frac{1}{2} \sum_k g^{ks} (g_{ik,j} + g_{jk,i} - g_{ij,k})$, where $g_{ab,c} = \frac{\partial}{\partial x_c} g_{ab}$ and $(g^{ij}) = (g_{ij})^{-1}$. In particular, $\Gamma_{ij}^k = \Gamma_{ji}^k$.

Example 4.8. In \mathbf{R}^n , $\Gamma_{ij}^k \equiv 0$ for all i, j, k; Γ_{ij}^k in $S^2 \subset \mathbf{R}^3$ with induced metric.

4.3 Parallel transport

Definition 4.9. Let $c: (a, b) \to M$ be a differentiable curve. A map $X: (a, b) \to TM$ with $X(t) \in T_{c(t)}M$ is called a vector field along c. Denote the space of all these maps by $\mathfrak{X}_c(M)$.

Example 4.10. $c'(t) \in \mathfrak{X}_c(M)$.

Proposition 4.11. Let (M, g) be a Riemannian manifold, ∇ be a Levi-Civita connection, $c : (a, b) \to M$ be a differentiable curve. There exists a unique map $\frac{D}{dt} : \mathfrak{X}_c(M) \to \mathfrak{X}_c(M)$ satisfying

- (a) $\frac{D}{dt}(X+Y) = \frac{D}{dt}X + \frac{D}{dt}Y$
- (b) $\frac{D}{dt}(fX) = f'(t)X + f\frac{D}{dt}X$, for all differentiable $f: (a,b) \to \mathbf{R}$
- (c) If $\widetilde{X} \in \mathfrak{X}(M)$ is a local extension of X(i.e. there exists $t_0 \in (a, b)$ and $\varepsilon > 0$ such that $X(t) = \widetilde{X}|_{c(t)}$ for all $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$) then $(\frac{D}{dt}X)(t_0) = \nabla_{c'(t_0)}\widetilde{X}$.

This map $\frac{D}{dt}$: $\mathfrak{X}_c(M) \to \mathfrak{X}_c(M)$ is called the covariant derivative along the curve c.

Example 4.12. For a surface $M \in \mathbf{R}^3$ the condition $\frac{D}{dt}(c'(t)) \equiv 0$ is equivalent to $c''(t) \perp T_{c(t)}M$, which is in its turn the condition for c to be geodesic known from the course of Differential Geometry.

Definition 4.13. Let $X \in \mathfrak{X}_c(M)$. If $\frac{D}{dt}X = 0$ then X is said to be parallel along c.

Example 4.14. In \mathbb{R}^n it means that X does not depend on the point $p \in \mathbb{R}^n$.

Theorem 4.15. Let $c : [a,b] \to M$ be a smooth curve, $v \in T_{c(a)M}$. Then there exists a unique vector field $X \in \mathfrak{X}_c(M)$ with $X(a) = v \in T_{c(a)}M$.

Example 4.16. Parallel vector fields form a vector space of dimension n (for *n*-dimensional (M, g)).

Definition 4.17. Let $c : [a,b] \to M$ be a smooth curve, A linear map $P_c : T_{c(a)}M \to T_{c(b)}M$ called parallel transport defined by $P_c(v) = X(b)$ where $X \in \mathfrak{X}_c(M)$ with X(a) = v, $\frac{D}{dt}X = 0$.

Remark. (a) The parallel transport P_c depend on the curve c (not only on its endpoints). (b) The parallel transport is a linear isometry $P_c: T_{c(a)}M \to T_{c(b)}M$, i.e. $g_{c(a)}(v,w) = g_{c(b)}(P_cv, P_cw)$.

5 Geodesics

5.1 Geodesics as solutions to ODEs

Definition 5.1. Given (M, g), the curve $c : [a, b] \to M$ is a geodesic if $\frac{D}{dt}c'(t) = 0$ for all $t \in [a, b]$.

Lemma 5.2. If c is a geodesic that c is parametrized proportional to the arc length.

Theorem 5.3. Given a Riemannian manifold (M, g), $p \in M$, $v \in T_pM$, there exists $\varepsilon > 0$ and a unique geodesic $c : (-\varepsilon, \varepsilon) \to M$ such that c(0) = p, c'(0) = v.

Example 5.4–5.5. Geodesics in Euclidean space, on a sphere, and in the upper half-plane model \mathbf{H}^2 .

Remark. Differential equations for geodesics: $c''_k(t) = -\sum_{ij} c'_i(t) c'_j(t) \Gamma^k_{ij}(c(t)), k = 1, \dots, n.$

5.2 Geodesics as distance-minimizing curves. First variation formula of the length.

Definition 5.6. Let $c : [a,b] \to M$ be a smooth curve. A smooth map $F : (-\varepsilon, \varepsilon) \times [a,b] \to M$ is a differentiable variation of c if F(0,t) = c(t).

Variation is proper if F(s, a) = c(a) and F(s, b) = c(b) for all $s \in (-\varepsilon, \varepsilon)$. Variation may be considered as a family of the curves $F_s(t) = F(s, t)$.

Definition 5.7. A variation vector field X of the variation F is defined by $X(t) = \frac{\partial F}{\partial s}(0,t)$.

Definition 5.8. The length and energy of variation are

$$l(s) := \int_{a}^{b} ||\frac{\partial F}{\partial t}(s,t)||dt, \quad l: (-\varepsilon,\varepsilon) \to [0,\infty); \qquad \qquad E(s) := \int_{a}^{b} ||\frac{\partial F}{\partial t}(s,t)||^{2}dt, \quad E: (-\varepsilon,\varepsilon) \to [0,\infty).$$

Remark: l(s) is the length of the curve $F_s(t)$.

Theorem 5.9. A smooth curve c is geodesic if and only if l'(0) = 0 for each proper variation and c is parametrized proportionally to the arc length.

Corollary 5.10. Let $c : [a,b] \to M$ be the shortest curve from c(a) to c(b), and c is parametrized proportionally to the arc length. Then c is geodesic.

Lemma 5.11. (Symmetry Lemma). Let $W \subset \mathbb{R}^2$ be an open set and $F: W \to M$, $(s,t) \mapsto F(s,t)$ be a differentiable map. Let $\frac{D}{dt}$ be the covariant derivative along $F_s(t)$ and $\frac{D}{ds}$ be the covariant derivative along $F_t(s)$. Then $\frac{D}{dt}\frac{\partial F}{\partial s} = \frac{D}{ds}\frac{\partial F}{\partial t}$.

Theorem 5.12. (First variation formula of the length). Let $F : (-\varepsilon, \varepsilon) \times [a, b] \to M$ be a variation of $c(t), c'(t) \neq 0$. Let X(t) be its variation vector field and $l : (-\varepsilon, \varepsilon) \to [0, \infty)$ its length. Then

$$l'(0) = \int_{a}^{b} \frac{1}{||c'(t)||} \frac{d}{dt} \langle X(t), c'(t) \rangle dt - \int_{a}^{b} \frac{1}{||c'(t)||} \langle X(t), \frac{D}{dt} c'(t) \rangle dt.$$

Corollary 5.13.

- If in addition c(t) is parametrized proportionally to the arc length, $||c'(t)|| \equiv c$ then $l'(0) = \frac{1}{c} \langle X(b), c'(b) \rangle - \frac{1}{c} \langle X(a), c'(a) \rangle - \frac{1}{c} \int_{a}^{b} \langle X(t), \frac{D}{dt}c'(t) \rangle dt$;
- if c(t) is geodesic, then $l'(0) = \frac{1}{c} \langle X(b), c'(b) \rangle \frac{1}{c} \langle X(a), c'(a) \rangle$;
- if F is proper and c is parametrised proportionally to the arc length, then $l'(0) = -\frac{1}{c} \int_a^b \langle X(t), \frac{D}{dt}c'(t) \rangle dt$;
- if F is proper and c is geodesic, then l'(0) = 0.

Lemma 5.14. Any vector field X along c(t) with X(a) = X(b) = 0 is a variation vector field for some proper variation F.

5.3 Exponential map and Gauss Lemma

Let $p \in M$, $v \in T_p M$. Denote by $c_v(t)$ the unique maximal (by inclusion) geodesic with $c_v(0) = p$, $c'_v(0) = v$.

Definition 5.15. If $c_v(1)$ exists, define $exp_p: T_pM \to M$ by $v \mapsto c_v(1)$, the exponential map at p.

Example 5.16. Exponential map on the sphere S^2 : length of c_v from p to $c_v(1)$ equals to ||v||.

Notation. $B_r(O_p) = \{v \in T_pM \mid ||v|| < r\} \subset T_pM$ is a ball of radius r centered at $p = O_p$.

Proposition 5.17. (without proof).

For any $p \in (M,g)$ there exists an r > 0 such that $exp_p : B_r(O_p) \to exp_p(B_r(O_p))$ is a diffeomorphism.

Example. On S^2 the set $exp_p(B_{\pi/2}(O_p))$ is a hemisphere, so that every geodesic starting from p is orthogonal to the boundary of this set.

Theorem 5.18. (Gauss Lemma). Let (M, g) be a Riemannian manifold, $p \in M$ and let $\varepsilon > 0$ be such that $exp_p : B_{\varepsilon}(O_p) \to exp_p(B_{\varepsilon}(O_p))$ is a diffeomorphism. Define a hypersurface $A_{\delta} := \{exp_p(w) \mid ||w|| = \delta\}$ for all $0 < \delta < \varepsilon$. Then every <u>radial</u> geodesic $c : t \to exp_p(tv), t \ge 0$ is orthogonal to A_{δ} .

Remark 5.19. The curve $c_v(t) = exp_p(tv)$ is indeed a geodesic!

Lemma 5.19. Let $p \in M$ and let $\varepsilon > 0$ be such that $exp_p : B_{\varepsilon}(O_p) \to exp_p(B_{\varepsilon}(O_p))$ is a diffeomorphism. Take $\gamma : [0,1] \to exp_p(B_{\varepsilon}(O_p))$. Then there exists a curve $v(s) : [0,1] \to T_p(M)$, ||v(s)|| = 1 and a non-negative function $r(s) : [0,1] \to \mathbf{R}_+$ such that $\gamma(s) = exp_p(r(s) \cdot v(s))$.

Lemma 5.20. Let $r : [0,1] \to \mathbf{R}$, $v : [0,1] \to S_p M = w \in T_p M \mid ||w|| = 1$ }. Define $\gamma : [0,1] \to exp_p(B_{\varepsilon}(O_p))$ by $\gamma(s) = exp_p(r(s)v(s))$. Then $l(\gamma) \ge |r(1) - r(0)|$ for the length $l(\gamma)$ of γ and the equality holds if and only if γ is a reparametrisation of a radial geodesic (i.e. if and only if $v(s) \equiv const = v(0)$, r(s) is increasing or decreasing function).

Corollary 5.21. Given a point $p \in M$, there exists $\varepsilon > 0$ such that for any $q \in B_{\varepsilon}(O_p)$ there exists a curve c(t) connecting p and q and satisfying l(c) = d(p,q). (This curve is a radial geodesic).

Notation. Denote $B_{\varepsilon}(p) := exp_p(B_{\varepsilon}(O_p)) \subset M$, a geodesic ball and $S_{\varepsilon}(p) = \partial B_{\varepsilon}(p)$, a geodesic sphere. Note, $B_{\varepsilon}(p) = \{q \in M \mid d(p,q) \le \varepsilon\}$.

Proposition 5.22. (without proof). Let $p \in M$. Then there exists an open set U_p , $p \in U$ and an ε such that for any $q \in U$ the map $exp_q : B_{\varepsilon}(O_q) \to B_{\varepsilon}(q)$ are diffeomorphisms.

Remark 5.23. (Naturality of exponential map). Let $\varphi : (M, g) \to (N, h)$ be an isometry. Then $D\varphi = exp_{\varphi(p)}^{-1} \circ \varphi \circ exp_p$.

5.4 Hopf-Rinow Theorem

Definition 5.24. A geodesic $c : [a, b] \to M$ is <u>minimal</u> if l(c) = d(c(a), c(b)). A geodesic $c : \mathbf{R} \to M$ is <u>minimal</u> if its restriction $c|_{[a,b]}$ is minimal for each segment $[a, b] \in \mathbf{R}$.

Example: no minimal geodesics on S^2 , all geodesics are minimal in \mathbf{E}^2 and \mathbf{H}^2 .

Definition 5.25. A Riemannian manifold (M, g) is geodesically complete if every geodesic $c : [a, b] \to M$ can be extended to a geodesic $\tilde{c} : \mathbf{R} \to M$ (i.e. can be extended infinitely in both directions). Equivalently: if exp_p is defined on T_pM for all $p \in M$.

Theorem 5.26. (Hopf-Rinow) Let (M, g) be a connected Riemannian manifold with metric g. Then the following conditions are equivalent:

- (a) (M, g) is complete (i.e. every Cauchy sequence converges);
- (b) every closed and bounded subset is compact
- (c) (M, g) is geodesically complete.

Moreover, every of the conditions above imply

(d) for every $p, q \in M$ there exists a minimal geodesic connecting p and q.

Remark. Theorem 5.24 uses the following notions defined in a metric space:

- $\{x_i\}, x_i \in M$ is a Cauchy sequence if $\forall \varepsilon \exists N : \forall m, n > N \ d(x_m, x_n) < \varepsilon;$
- a set $A \subset M$ is <u>bounded</u> if $A \subset B_r(p)$ for some $r > 0, p \in M$;
- a set $A \subset M$ is closed if $\{x_n \in A, x_n \to x\} \Rightarrow x \in A;$
- a set $A \subset M$ is compact if each open cover has a finite subcover;
- a set $A \subset M$ is sequentially compact if each sequence has a converging subsequence.

Some properties: 1. A compact set is sequentially compact, bounded, closed.

- 2. A compact metric space is complete.
- 3. In a complete metric space, a sequentially compact set is compact.

6 Integration on Riemannian manifolds

Definition 6.1 Let (M, g) be a Riemannian manifold and $f : M \to \mathbf{R}$ be a function with $supp(f) \subset U$, where $\varphi : U \to V$ is a coordinate chart, $\varphi = (x_1, \ldots, x_n)$. Then define

$$\int_{M} f = \int_{M} f d \, Vol = \int_{U} f d \, Vol = \int_{V} f \circ \varphi^{-1}(x) \sqrt{\det(g_{ij}) \circ \varphi^{-1}(x)} dx$$

where $g_{ij}(p) = \langle \frac{\partial}{\partial x_i} |_p, \frac{\partial}{\partial x_j} |_p \rangle$ for all $p \in U$.

Proposition 6.2. Definition 6.1 does not depend on the choice of coordinates.

Definition 6.3. A <u>volume</u> of a subset $A \subset U \subset M$ is defined by

$$VolA = \int_{M} 1_{A} \ d \ Vol = \int_{A} d \ Vol = \int_{\varphi(A)} \sqrt{\det(g_{ij}) \circ \varphi^{-1}(x)} dx,$$

where $1_A: M \to \{0, 1\}, 1_A(p) = 1$ if $p \in A$ and 0 otherwise.

Example 6.4. Integration on \mathbf{H}^2 .

Definition 6.5. A partition of unity is a set of smooth functions $\varphi_{\alpha} : M \to [0, 1]$ such that $\sum_{\alpha} \varphi_{\alpha}(p) = 1$ $\forall p \in M$ and for every $p \in M$ there exists an open set $U_p, p \in U_p$ such that for all but finitely many of α holds $\varphi_{\alpha}|_{U_p} \equiv 0$.

Definition 6.6. Given an open cover $\{U_{\alpha}\}$ of M, the set of functions $\{\varphi_{\alpha}\}$ <u>subordinates</u> to $\{U_{\alpha}\}$ if $\overline{supp \varphi_{\alpha}} \subset U_{\alpha}$ for all α .

Fact 6.7. For any countable atlas U_{α} there exists a partition of unity which subordinates to $\{U_{\alpha}\}$.

Corollary 6.8. For a Riemannian manifold M with countable atlas and subordinate partition of unity $\{\varphi_{\alpha}\}$ one has $\int_{M} f d \ Vol = \sum_{\alpha} \int_{U_{\alpha}} f \cdot \varphi_{\alpha} d \ Vol$.

Remark 6.9. In practice, one chooses (if possible) a chart $U \subset M$ such that $Vol(M \setminus U) = 0$, then $\int_M f \, d \, Vol = \int_U f \, d \, Vol$.

Remark 6.10. Isometries preserve the volume, i.e. if $\psi : (M,g) \to (N,h)$ is an isometry then $\int_N f \, d \, Vol = \int_M f \circ \psi \, d \, Vol$.