Riemannian Geometry, Michaelmas 2013.

Term 1: outline

1 Smooth manifolds

“Smooth” means “infinitely differentiable”, C'*°.

Definition 1.1. Let M be a set. An n-dimensional smooth atlas on M is a collection of triples (Uy, Va, ¢a),
where a € I for some indexing set I, s.t.

0. Uy, € M; V, CR"™is open;
1. Uyer Ua = M;

acl Y&

2. Each ¢, : U, — V,, is a bijection;

w

. The composition @z 0 ¢ 3" 4. (Wans): PaUaNp) = ¢5(UaNp) is a smooth map for all ordered pairs
(ar, B), where a, § € 1.

The number n is called the dimension of M, the maps ¢, are called coordinate charts, the compositions
@p 0,1 are called transition maps or change of coordinates.

Definition 1.2. M is called a smooth n-dimensional manifold if

1. M has an n-dimensional smooth atlas;
2. M is Hausdorff (see Def. 1.4 below);

3. M is second-countable (technical condition, we will ignore).

Definition 1.3. Let M have a smooth atlas. We call a set A C M open iff for each a € I the set v (ANU,)
is open in R™. This defines a topology on M.

Definition 1.4. M is called Hausdorff if for each z,y € M, x # y there exist open sets A, and A, such
that z € A,, y € A, and A, N A, = 0.

Example 1.6. Examples of smooth manifolds: sphere, torus, Klein bottle, 3-torus, real projective space.

Definition 1.7. Let f : M™ — N" be a map of smooth manifolds with atlases (U;, ©i(U;), ¢i)icr and
(U, (U;),%;5)jes. The map f is smooth if it induces smooth maps between the open sets in R™ and R”,
ie ifyjofo <p;1 lo:(f=1(v;nf(U,))) 1s smooth for all i € I, j € J.

If f is a bijection and both f and f~—! are smooth then f is called a diffeomorphism.

Definition 1.8. Let U C R"™ be open, m < n and f: U — R™ be a smooth map. Let Df |,= (gﬁ) be the
matrix of partials at € U (differential). Then '

e z € R" is a regular point of f if rk(Df |,) = m;
e y € R™ is a regular value of f if f~1({y}) consists of regular points only.
Theorem 1.9. (Implicit Function Theorem).
If y € f(U) is a regular value of f then f~1(y) is an (n — m)-dimensional smooth manifold.

Examples 1.10-1.11. An ellipsoid is a smooth manifold. Matrix groups are smooth manifolds.

Definition 1.12. A Lie group is a smooth manifold G together with a group operation

G xG— G s.t. the maps (g1,92) — g1 - g2 and g — g~ ! are smooth.
In particular, all matrix groups are Lie groups.



2 Tangent space

Definition 2.1. Let M be a smooth manifold, p € M. Then C*(M,p) is a set of all smooth functions on
M defined in a neighbourhood of p.

Definition 2.2. A derivation on C*°(M,p) is a linear map 6 : C*°(M,p) — R, s.t.
for all f,g € C°°(M,p) holds &(f-g) = f(p)d(g) +(f)g(p) (the Leibniz rule).
Denote by D> (M, p) the set of all derivations. Check that it is a real vector space.

Definition 2.3. The set D>°(M,p) is called the tangent space of M at p, denoted T, M.
Definition 2.4. Let 7 : (a,b) — M be a smooth curve in M, v(t9) = p and f € C>°(M,p). Define the
directional derivative of f at p along v by v/ (¢0)(f) € R:

+(to)(f) = lim f(y(to + 5)) = F(v(to))

s—0 S

= (Fo1)(t0) = |y (F o)

Check that the directional derivatives satisfy the properties of derivations.

Remark. Two curves 7 and 7, through p define the same directional derivative iff they have the same
direction and the same speed at p.

Notation. Let M™ be a manifold, ¢ : U -V C R™ a chart at p € U C M. For i = 1,...,n define the
curves v;(t) = o 1(po(p) + e;t) for small t > 0 (here e; is a basis of R™).

Def. 2.5. ;2| = 7/(0), ie.
d

d 0
_ Y _ -1 . _ = -1
A1) = (T om) (0) = 5 0™ )e0) 16| Ly = 5 057 o)
( 8%1 on the right is just a classical partial derivative).
Proposition 2.6. <a%1, ey 8%”> = {Directional Derivatives} = D*>°(M, p).

Lemma 2.7. Let ¢ : U C M — R™ be a chart, ¢(p) = 0. Let 5(¢t) = >, (kite;) € R™ be a curve (straight
ray), where (eq,...,e,) is a basis. Let y(t) = ¢~ () € M, p € v(0). Then v'(0) = >, kia%i'

Example 2.8. For the group SL(n,R) = {A € M,, | detA = 1}, the tangent space at I is the set of all
trace-free matrices: Tr(SL(n,R)) = {X € M, (R) | trX = 0}.

Proposition 2.9. (Change of basis for T,M). Let M™ be a smooth manifold, ¢, : U, — V., a chart,

8
o o . . ) _ n 0z, 9
(%, ...,z%) the coordinates in V,,. Then B lp=> i1 D Dat -

Definition 2.10. Let M, N be smooth manifolds, let f : M — N be a smooth map. Define a linear map
Df(p) : T,M — Tyyn called the differential of f at p by D f(p)y'(0) = (fo~)'(0) for a smooth curve v € M
with v(0) = p.

Lemma 2.11. (a) D(id)(p) : T,M EN T,M;

(b) for M % N & L bolds D(go f)| = Dyl o D]

Tangent bundle and vector fields

Definition 2.13. Let M be a smooth manifold. A disjoint union TM = UpemTpM of tangent spaces to
each p € M is called a tangent bundle.
There is a map IT : TM — M (called projection), II(v) = p if v € T, M.

Proposition 2.14. The tangent bundle T'M if M™ has a structure of 2n-dimensional smooth manifold and
II: TM — M is a smooth map.

Definition 2.15. A vector field X is a “section” of the tangent bundle, that is a smooth map X : M — T'M
such that ITo X = idj, is an identity map on M.



The set of all vector fields on M is denoted X(M). This set has a structure of a vector space.

Remark 2.16. Taking a coordinate chart (U, = (z1,...,2,))) we can write any vector field X |y as
X(p) =Y, filp) 7= € T,M.

Examples 2.17-2.18: vector fields on the torus and 3-sphere.

Remark 2.19. Since for X € X(M) we have X, € T, M which is a directional derivative at p € M, we can

use the vector field to differentiate a function f € C°(M), f: M - Rby (Xf)(p) =X f => a; (p)g—:i
so that we get another smooth function Xy € C*°(M).

p7
Proposition 2.20. Let X,Y € X(M). Then there exists a unique vector field Z € X(M) such that
Z(f) = X(Y(f)) = Y(X(f)) for all f € C=(M).
This vector field Z(f) = X(Y(f)) — Y(X(f)) is denoted [X,Y] and called the Lie bracket.
Proposition 2.21. Properties of the Lie bracket:

a. [X,Y] =-[Y,X];

b. [aX +bY, Z] = a[X, Z] 4+ b]Y, Z] for a,b € R;

c. [X,Y],Z]+]Y,Z],X]+[[Z,X],Y] =0 (Jacobi identity);

d. [fX,9Y] = fglX, Y]+ [(Xg)Y —g(Y /)X for f,g € C=(M).
Definition 2.22. A Lie algebra is a vector space g with a binary operation [,-] : g X g — g called the Lie

bracket which satisfies properties a,b,c of Proposition 2.21.
In other words, X(M) is a Lie algebra.

Theorem 2.23. (The Hairy Ball Theorem).

There is no non-vanishing continuous vector field on an even-dimensional sphere S2™.
3 Riemannian metric
Definition 3.1. Let M be a smooth manifold. A Riemannian metric written g,(-,-) or (-,-), is a family of

real inner products g, : T,M x T, M — R depending smoothly on p € M.
A smooth manifold M with a Reimannian metric g is called a Riemannian manifold (M, g).

Examples 3.2—-3.3. Euclidean metric in R"”, induced metric on M € R™.

Definition 3.4. Let (M, g) be a Riemannian manifold. For v € T,M define the length of v by 0 < ||v||, =

V gp(v,v).
Suppose ¢ : [a,b] — M is a smooth curve on M. Define the length of ¢ by L(c) = f; [|c/(t)]|dt.
(this does not depend on parametrization, see Theorem 3.10).

Remark 3.5. Let M € R™ be a smooth manifold given by f(z1,...,2,) =a. Let p € M, v € T,M. Then

v satisfies 31| 2Lq; = 0.

Example 3.6. three models of hyperbolic geometry:

model notation M g
. n {y e R"™ [ q(y,y) = —Lyns1 > 0} _
Hyperboloid w where q(x,y) = Y1, TiVi — Tnt1Ynt1 (v, w) = q(v,w)
Poincaré ball B" {xeR"|||z]?= D 22 < 1} gz (v,w) = W(v,w)
i=1
Upper half-space H" {reR" |z, >1} 9o (v, w) = 25 (v, w)

Definition 3.7. Given two vector spaces Vq, V, with real inner products (V;, (-, -);) we call a linear isomor-
phism T : V; — V4 a linear isometry if (Tv, Tw)s = (v, w); for all v,w € V;.
This is equivalent to preservation of the lengths of all vectors since (v, w) = 1((v+w,v+w) — (v,v) — (W, w)).



A diffeomorphism f : (M, g) — (N, h) of two Riemannian manifolds is an isometry if DF(p) : T, M — TN
is a linear isometry for all p € M.

Example 3.9. Isometry f: H? — B2 given by f(z) = j—jrz

Theorem 3.10. (Reparametrization). Let ¢ : [¢,d] — [a,b] be a strictly monotonic smooth function,
v : la,b] = M a smooth curve. Then for ¢ =co ¢ : [¢,d] = M (reparametrization of ¢) holds L(c) = L(¢).

Definition 3.11. A differentiable curve c : [a,b] — M is called an arc-length parametrization if ||¢/(¢¥)|] = 1.
)] = M, E(t) = cop(t), where o71(t) =

Every curve has an arc-length parametrization é(t) : [0, L(c
L(cljag)-
Example 3.12. Length of vertical segments in H. Vertical half-lines are geodesics.

Definition 3.13. Define a distance d : M x M — [0,00) by d(p,q) = infy{L(7)}, where 7 is a smooth
curve with end p and gq.
A curve ¢(t) : [a,b] — M is geodesic if d(c(x),c(y)) = L(c|(z,y)) for all z,y € [a,b] (x < y).

Remark 3.14. d turns (M, g) into a metric space.

Definition 3.15. If (X, d) is a metric space then any subset A € X is also a metric space with the induced
metric djaxa : A xS — [0,00).

Example 3.16 Punctured Riemannian sphere: R™ with g, (v, w) = W(v,w).
4 Levi-Civita connection and parallel transport
4.1 Levi-Civita connection

Example 4.1 In R"™, given a vector field X = Zai(p)% € X(R"™) and a vector v € T,R" define the

covariant derivative of X in direction v by V,(X) = }in% w = Zv(ai)%u e T,R".
ry ”

Properties 4.2. In R", the covariant derivative V, X satisfies properties (a)-(e) listed below in Definition 4.3
and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map V : X(M) x X(M) — X(M), X,YVxY is called a
covariant derivative or affine connection if for all X,Y,Z € X(M) and f,g € C*°(M) holds

(a) VX(Y + Z) = Vx(Y) + Vx(Z)
(b) Vx(fY)=X(f)Y(p) + f(p)VxY
(¢) VixtgvZ = fVxZ +gVvZ

Theorem 4.4. (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian
manifold. There exists a unique covariant derivative V on M with the additional properties for all XY, Z €
X(M):

(d) v((X,Y)) = (V,X,Y) + (X, V,Y) (Riemannian property);
(e) VxY —VyX =[X,Y] (Torsion-free)

This connection is called Levi-Civita connection of (M, g).

Example 4.5. Levi-Civita connection in R™ and in M C R"™ with induced metric.



4.2 Christoffel symbols

Definition 4.6. Let V be a Levi-Civita connection on (M, g) and ¢ : U — V a coordinate chart with

coordinates ¢ = (z1,...,2,). Then we have V% %(p) € T,M. ie. there exist uniquely determined
I}, € C>(U) with Vd% %(p) => Ffj%k(p). These functions are called Christoffel symbols of V with

respect to the chart .
They characterize V since \Y%

n
9 _ 9b o b.Tk 0
2 E b; dx; — Zaz dz; Ox; T .Zk azb]rivj R
i 2,7 7,

Proposition 4.7. I';; = 529" (gik.j + Gjk,i — Gijk), Where gap o = %gab and () = (gi;)~".
k
In particular, Ff] = Féfl

Example 4.8. In R", T}, = 0 for all 4, j, k; T'}; in $? C R? with induced metric.

4.3 Parallel transport

Definition 4.9. Let c: (a,b) — M be a differentiable curve. A map X : (a,b) — TM with X (t) € T,y M
is called a vector field along ¢. Denote the space of all these maps by X.(M).

Example 4.10. ¢(t) € X.(M).

Proposition 4.11. Let (M, g) be a Riemannian manifold, V be a Levi-Civita connection, ¢ : (a,b) — M
be a differentiable curve. There exists a unique map £ : X.(M) — X.(M) satisfying

(a) P(X+Y)=2Xx+ 2y
(b) Z(fX) = f(t)X + f2X, for all differentiable f : (a,b) = R

(c) If X € X(M) is a local extension of X
(i.e. there exists tg € (a,b) and € > 0 such that X (¢) = X|C(t) for all t € (to — &,t0 +¢))

then (%X)(to) = Vc’(to))?'

This map % : X (M) — X.(M) is called the covariant derivative along the curve c.

Example 4.12. For a surface M € R? the condition £ (c/(t)) = 0 is equivalent to ¢’ (t) L Tp.;yM, which is
in its turn the condition for ¢ to be geodesic known from the course of Differential Geometry.

Definition 4.13. Let X € X.(M). If 2X = 0 then X is said to be parallel along c.
Example 4.14. In R" it means that X does not depend on the point p € R".

Theorem 4.15. Let c: [a,b] — M be a smooth curve, v € T4 Then there exists a unique vector field
X e XF(M) with X(a) =v € Tc(a)M-

Example 4.16. Parallel vector fields form a vector space of dimension n (for n-dimensional (M, g)).
Definition 4.17. Let c : [a,b] — M be a smooth curve, A linear map P, : Toq)M — Tep)M called

parallel transport defined by P.(v) = X (b) where X € X.(M) with X(a) =v, 2X =0.

Remark. (a) The parallel transport P. depend on the curve ¢ (not only on its endpoints).
(b) The parallel transport is a linear isometry Pe : Toq)M — Tey M, ie. ge(a) (v, w) = gy (Pev, Pew).



5 Geodesics

5.1 Geodesics as solutions to ODEs
Definition 5.1. Given (M, g), the curve c¢: [a,b] — M is a geodesic if £¢/(t) =0 for all ¢ € [a, b].
Lemma 5.2. If ¢ is a geodesic that ¢ is parametrized proportional to the arc length.

Theorem 5.3. Given a Riemannian manifold (M, g), p € M, v € T, M, there exists ¢ > 0 and a unique
geodesic ¢ : (—e,e) — M such that ¢(0) = p, ¢/(0) = v.

Example 5.4-5.5. Geodesics in Euclidean space, on a sphere, and in the upper half-plane model H?2.

Remark. Differential equations for geodesics: cj/(t) = — >, c;(t)c}(t TE(e(t), k=1,...,n
5.2 Geodesics as distance-minimizing curves.
First variation formula of the length.

Definition 5.6. Let ¢ : [a,b] — M be a smooth curve. A smooth map F : (—e,e) x [a,b] = M is a
differentiable variation of ¢ if F(0,t) = ¢(¢).

Variation is proper if F(s,a) = ¢(a) and F(s,b) = ¢(b) for all s € (—¢,¢).

Variation may be considered as a family of the curves Fy(t) = F(s,1).

Definition 5.7. A variation vector field X of the variation F' is defined by X (t) = %—5(0, t).

Deﬁnition 5.8. The length and energy of variation are

b
f 128 (s, t)[|dt, 1:(—¢,&) — [0, 00); E(s) == [||% (s, t)[|?dt, E:(—¢,e) — [0,00).

a

Remark: [(s) is the length of the curve F(t).

Theorem 5.9. A smooth curve ¢ is geodesic if and only if I’(0) = 0 for each proper variation and c is
parametrized proportionally to the arc length.

Corollary 5.10. Let ¢ : [a,b] — M be the shortest curve from c(a) to ¢(b), and c is parametrized propor-
tionally to the arc length. Then c is geodesic.

Lemma 5.11. (Symmetry Lemma). Let W C R? be an open set and F : W — M, (s,t) — F(s,t) be a
differentiable map. Let ;- be the covariant derivative along F(t) and % be the covariant derivative along

DOF _ D dF
Ft( ) Then dt 9s ~— ds ot -

Theorem 5.12. (First variation formula of the length). Let F : (—¢,¢) X [a,b] = M be a variation
of ¢(t), ¢/ (t) # 0. Let X(t) be its variation vector field and [ : (—¢&,&) — [0, 00) its length. Then

/Hc ™ /uc (KO g o

Corollary 5.13.

e If in addition ¢(t) is parametrized proportionally to the arc length [l ()] = ¢
then '(0) = L(X(b),¢ (b)) = 1(X(a),¢/(a)) — L [ (X (1), 2 (£))dt;

e if ¢(t) is geodesic, then I'(0) = %(X(b),c’(b» - %(X(a), d(a));
e if I is proper and ¢ is parametrised proportionally to the arc length, then ’(0) = — 2 [

e if I is proper and c is geodesic, then I'(0) = 0.

Lemma 5.14. Any vector field X along c¢(t) with X (a) = X(b) = 0 is a variation vector field for some
proper variation F.



5.3 Exponential map and Gauss Lemma
Let p € M, v € T,M. Denote by c,(t) the unique maximal (by inclusion) geodesic with ¢,(0) = p, ¢, (0) = v.
Definition 5.15. If ¢,(1) exists, define exp, : T,M — M by v — ¢,(1), the exponential map at p.

Example 5.16. Exponential map on the sphere S?: length of ¢, from p to ¢,(1) equals to ||v]|.
Notation. B,(0,) = {v € T,M | ||v|| <r} C T,M is a ball of radius r centered at p = O,.

Proposition 5.17. (without proof).
For any p € (M, g) there exists an r > 0 such that exp, : B,.(0p) — exp,(B,(0,)) is a diffecomorphism.

Example. On S? the set exp,(By/2(Op)) is a hemisphere, so that every geodesic starting from p is orthogonal
to the boundary of this set.

Theorem 5.18. (Gauss Lemma). Let (M, g) be a Riemannian manifold, p € M and let € > 0 be such
that exp, : B-(0p) — exp,y(B:(0,)) is a diffeomorphism. Define a hypersurface As := {exp,(w) | ||w|| = 6}
for all 0 < § < e. Then every radial geodesic ¢ : t — exp,(tv), t > 0 is orthogonal to As.

Remark 5.19. The curve ¢,(t) = exp,(tv) is indeed a geodesic!

Lemma 5.19. Let p € M and let € > 0 be such that exp, : B-(O,) — exp,(B:(0,)) is a diffeomorphism.
Take v : [0,1] — expp(B:(0p)). Then there exists a curve v(s) : [0,1] — T,(M), |lv(s)]| = 1 and a
non-negative function r(s) : [0,1] — R4 such that v(s) = exp,(r(s) - v(s)).

Lemma 5.20. Let r: [0,1] = R, v : [0,1] = S,M =w € T,M | ||w|| = 1}. Define v : [0, 1] — exp,(B:(0,))
by v(s) = expy(r(s)v(s)). Then I(y) > |r(1) — r(0)| for the length I(+) of v and the equality holds if and
only if v is a reparametrisation of a radial geodesic (i.e. if and only if v(s) = const = v(0), r(s) is increasing
or decreasing function).

Corollary 5.21. Given a point p € M, there exists ¢ > 0 such that for any ¢ € B.(O,) there exists a curve
¢(t) connecting p and ¢ and satisfying I(c) = d(p, ¢). (This curve is a radial geodesic).

Notation. Denote B:(p) := exp,(B:(0,)) C M, a geodesic ball and S, (p) = 9B:(p), a geodesic sphere.
Note, Be(p) = {g € M [ d(p,q) < e}.

Proposition 5.22. (without proof). Let p € M. Then there exists an open set Uy, p € U and an ¢ such
that for any ¢ € U the map exp, : B:(O,) — B:(q) are diffeomorphisms.

Remark 5.23. (Naturality of exponential map).
Let ¢ : (M, g) — (N, h) be an isometry. Then Dy = exp;(lp) 0 (0 expp.

5.4 Hopf-Rinow Theorem
Definition 5.24. A geodesic c¢: [a,b] — M is minimal if I(¢) = d(c(a), c¢(b)).
A geodesic ¢ : R — M is minimal if its restriction c[(, 5 is minimal for each segment [a, b] € R.

Example: no minimal geodesics on S2, all geodesics are minimal in E? and H2.

Definition 5.25. A Riemannian manifold (M, g) is geodesically complete if every geodesic ¢ : [a,b] = M
can be extended to a geodesic ¢ : R — M (i.e. can be extended infinitely in both directions).
Equivalently: if exp, is defined on T, M for all p € M.

Theorem 5.26. (Hopf-Rinow) Let (M, g) be a connected Riemannian manifold with metric g. Then the
following conditions are equivalent:

(a) (M, g) is complete (i.e. every Cauchy sequence converges);
(b) every closed and bounded subset is compact

(¢) (M,g) is geodesically complete.

Moreover, every of the conditions above imply

(d) for every p,q € M there exists a minimal geodesic connecting p and gq.



Remark. Theorem 5.24 uses the following notions defined in a metric space:

o {x;}, z; € M is a Cauchy sequence if Ve AN :Vm,n > N d(z,,z,) < &;

a set A C M is bounded if A C B,.(p) for some r > 0, p € M,

aset A C M is closed if {z, € A,x,, =z} = x € A;

a set A C M is compact if each open cover has a finite subcover;

a set A C M is sequentially compact if each sequence has a converging subsequence.

Some properties: 1. A compact set is sequentially compact, bounded, closed.
2. A compact metric space is complete.
3. In a complete metric space, a sequentially compact set is compact.

6 Integration on Riemannian manifolds

Definition 6.1 Let (M, g) be a Riemannian manifold and f : M — R be a function with supp(f) C U,
where ¢ : U — V is a coordinate chart, ¢ = (x1,...,2,). Then define

| =] saver= [ gaver= [ gootw) fdet(ay) o o )i,

ps 50 |p) for all p € U

where g;;(p) = <6%i

Proposition 6.2. Definition 6.1 does not depend on the choice of coordinates.

Definition 6.3. A volume of a subset A C U C M is defined by

VolA:/ 1AdVol:/ dVol:/ Vdet(gi) o o= (x)da,
M A ©(A)

where 14 : M — {0,1}, 14(p) =1 if p € A and 0 otherwise.

Example 6.4. Integration on H?.

Definition 6.5. A partition of unity is a set of smooth functions ¢, : M — [0,1] such that > ¢.(p) =1
Vp € M and for every p € M there exists an open set U,, p € U, such that for all but finitely many of «
holds ¢4 |v, = 0.

Definition 6.6. Given an open cover {U,} of M, the set of functions {¢,} subordinates to {U,}
if supp @o C U, for all a.

Fact 6.7. For any countable atlas U, there exists a partition of unity which subordinates to {U,}.

Corollary 6.8. For a Riemannian manifold M with countable atlas and subordinate partition of unity {p, }
one has [,, fd Vol =3 qu f - vad Vol.

Remark 6.9. In practice, one chooses (if possible) a chart U C M such that Vol(M \ U) =0,
then [, f d Vol = [, f d Vol.

Remark 6.10. Isometries preserve the volume,
ie. if ¢ : (M,g) = (N,h) is an isometry then fo d Vol = fo o d Vol.



