Riemannian Geometry, Michaelmas 2013.

Riemannian metric, Levi-Civita connection and
parallel transport: outline

3 Riemannian metric

Definition 3.1. Let M be a smooth manifold. A Riemannian metric written g,(-,-) or (-,-), is a family of
real inner products g, : T,M x T,M — R depending smoothly on p € M.
A smooth manifold M with a Reimannian metric g is called a Riemannian manifold (M, g).

Examples 3.2—3.3. Euclidean metric in R", induced metric on M € R"™.
Definition 3.4. Let (M, g) be a Riemannian manifold. For v € T, M define the length of v by 0 < ||v||; =

Vgp(v,v).
Suppose ¢ : [a,b] = M is a smooth curve on M. Define the length of ¢ by L(c) = f; [l (t)]]dt.
(this does not depend on parametrization, see Theorem 3.10).

Remark 3.5. Let M € R™ be a smooth manifold given by f(z1,...,2,) =a. Let p € M, v € T,M. Then
v satisfies Y1 2Ly, = 0.

Example 3.6. three models of hyperbolic geometry:

model notation M g
: eR"™ [ q(y,y) = —1,yns1 > 0}
Hyperboloid wn 1 " st v,w) = q(v,w
P where q(z,y) = >/, Ti¥i — Tny1Yni1 (v, w) = q(v,w)
Poincaré ball B" {xeR"|||z|]?= Y 22 < 1} gz (v,w) = W(v,w)
i=1
Upper half-space H" {reR" |z, >1} 9o (v, w) = L (v, w)

Definition 3.7. Given two vector spaces V;, V, with real inner products (V;, (-, -);) we call a linear isomor-
phism T : V3 — V5 a linear isometry if (Tv, Tw)s = (v, w); for all v,w € V5.

This is equivalent to preservation of the lengths of all vectors since (v, w) = 1 ({(v+w, v+w) — (v,v) — (w, w)).
A diffeomorphism f : (M, g) — (NN, h) of two Riemannian manifolds is an isometry if DF(p) : T,M — TN
is a linear isometry for all p € M.

Example 3.9. Isometry f: H? — B2 given by f(z) = 27;:

Theorem 3.10. (Reparametrization). Let ¢ : [¢,d] — [a,b] be a strictly monotonic smooth function,
v : la,b] = M a smooth curve. Then for ¢ =co ¢ : [¢,d] — M (reparametrization of ¢) holds L(c) = L(¢).

Definition 3.11. A differentiable curve ¢ : [a,b] — M is called an arc-length parametrization if ||c/(¢)|| = 1.
Every curve has an arc-length parametrization ¢é(t) : [0, L(c|jq))] — M, &(t) = co ¢(t), where p~1(t) =
L(C|[a7t]).

Example 3.12. Length of vertical segments in H. Vertical half-lines are geodesics.

Definition 3.13. Define a distance d : M x M — [0,00) by d(p,q) = inf,{L(y)}, where v is a smooth
curve with end p and gq.
A curve c(t) : [a,b] — M is geodesic if d(c(x),c(y)) = L(c|(z,y) for all z,y € [a,b] (z <y).

Remark 3.14. d turns (M, g) into a metric space.

Definition 3.15. If (X, d) is a metric space then any subset A € X is also a metric space with the induced
metric djaxa : A xS —[0,00).

Example 3.16 Punctured Riemannian sphere: R™ with g, (v,w) = W(v,w).



4 Levi-Civita connection and parallel transport
4.1 Levi-Civita connection

Example 4.1 In R", given a vector field X = Zai(P)a%i € X(R"™) and a vector v € T,R" define the

covariant derivative of X in direction v by V,(X) = }111(1) w = Ev(ai)%‘p e T,R™
5 ;

Properties 4.2. In R", the covariant derivative V, X satisfies properties (a)-(e) listed below in Definition 4.3
and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map V : X(M) x X(M) — X(M), X,YVxY is called a
covariant derivative or affine connection if for all X,Y,Z € X(M) and f,g € C*°(M) holds

(a) VxY+2)=Vx(Y)+Vx(2)
(b) Vx(fY)=X(f)Y(p) + f(p)VxY
(¢) VixigvZ = fVxZ+gVyZ

Theorem 4.4. (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian
manifold. There exists a unique covariant derivative V on M with the additional properties for all XY, Z €
X(M):

(d) v({X,Y)) =(V,X,Y) + (X, V,Y) (Riemannian property);
(e) VxY -V, X = [X,Y] (Torsion-free)

This connection is called Levi-Civita connection of (M, g).

Example 4.5. Levi-Civita connection in R™ and in M C R"™ with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let V be a Levi-Civita connection on (M, g) and ¢ : U — V a coordinate chart with

coordinates ¢ = (z1,...,2,). Then we have Voo 22-(p) € T,M. ie. there exist uniquely determined
Ffj € C*(U) with Va%i %(p) =3 Ffja%k(p)' These functions are called Christoffel symbols of V with

respect to the chart .

n
i ; e - 0b; 9 Tk O
They characterize V since v . Zl bjﬁj = E @i g 3oy T _Zk aibiTf 55—
i, 07,

i gy j=

-

i=1

Proposition 4.7. Ffj = %ngs(gik’j + Gjki — Gij k), Where gop o = —526 gapr and () = (gi;) "
k
In particular, I‘fj = 1";%-.

Example 4.8. In R", Ff’j =0 for all 4, j, k; Ff’j in $? ¢ R? with induced metric.

4.3 Parallel transport

Definition 4.9. Let c: (a,b) = M be a differentiable curve. A map X : (a,b) — TM with X(t) € T, M
is called a vector field along c. Denote the space of all these maps by X.(M).

Example 4.10. ¢/(t) € X.(M).




Proposition 4.11. Let (M, g) be a Riemannian manifold, V be a Levi-Civita connection, ¢ : (a,b) — M
be a differentiable curve. There exists a unique map % s X (M) — X (M) satisfying

(a) 2(X+Y)=2Xx+ L2y
(b) B(fX)=f'(t)X + fEX, for all differentiable f : (a,b) = R

(c) If X € X(M) is a local extension of X
(i.e. there exists tg € (a,b) and € > 0 such that X (¢) = X|c(t) for all t € (to — &,t0 +¢€))

then (%X)(to) = Vcl(to))?.

This map % : X (M) — X.(M) is called the covariant derivative along the curve c.

Example 4.12. For a surface M € R? the condition £ (c/(t)) = 0 is equivalent to ¢’(t) L T,;)M, which is
in its turn the condition for ¢ to be geodesic known from the course of Differential Geometry.

Definition 4.13. Let X € X (M). If %X = 0 then X is said to be parallel along c.
Example 4.14. In R" it means that X does not depend on the point p € R".

Theorem 4.15. Let c: [a,b] — M be a smooth curve, v € T4)5- Then there exists a unique vector field
X € X (M) with X(a) =v € Tc(a)M-

Example 4.16. Parallel vector fields form a vector space of dimension n (for n-dimensional (M, g)).

Definition 4.17. Let c : [a,b] — M be a smooth curve, A linear map P, : Toq)M — Tepy M called
parallel transport defined by P.(v) = X (b) where X € X.(M) with X(a) =v, £X =0.

Remark. (a) The parallel transport P. depend on the curve ¢ (not only on its endpoints).
(b) The parallel transport is a linear isometry Pe : To(q)M — Tey M, ie. ge(a) (v, w) = gy (Pev, Pew).



