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Riemannian metric, Levi-Civita connection and
parallel transport: outline

3 Riemannian metric

Definition 3.1. Let M be a smooth manifold. A Riemannian metric written gp(·, ·) or 〈·, ·〉p is a family of
real inner products gp : TpM × TpM → R depending smoothly on p ∈M .
A smooth manifold M with a Reimannian metric g is called a Riemannian manifold (M, g).

Examples 3.2–3.3. Euclidean metric in Rn, induced metric on M ∈ Rn.

Definition 3.4. Let (M, g) be a Riemannian manifold. For v ∈ TpM define the length of v by 0 ≤ ||v||g =√
gp(v, v).

Suppose c : [a, b]→M is a smooth curve on M . Define the length of c by L(c) =
∫ b
a
||c′(t)||dt.

(this does not depend on parametrization, see Theorem 3.10).

Remark 3.5. Let M ∈ Rn be a smooth manifold given by f(x1, . . . , xn) = a. Let p ∈M , v ∈ TpM . Then

v satisfies
∑n
i=1

∂f
∂xi

vi = 0.

Example 3.6. three models of hyperbolic geometry:

model notation M g

Hyperboloid Wn {y ∈ Rn+1 | q(y, y) = −1, yn+1 > 0}
where q(x, y) =

∑n
i=1 xiyi − xn+1yn+1

〈v, w〉 = q(v, w)

Poincaré ball Bn {x ∈ Rn | ||x||2 =
n∑
i=1

x2i < 1} gx(v, w) = 4
(1−||x||2)2 〈v, w〉

Upper half-space Hn {x ∈ Rn | xn > 1} gx(v, w) = 1
x2
n
〈v, w〉

Definition 3.7. Given two vector spaces V1, V2 with real inner products (Vi, 〈·, ·〉i) we call a linear isomor-
phism T : V1 → V2 a linear isometry if 〈Tv, Tw〉2 = 〈v, w〉1 for all v, w ∈ V1.

This is equivalent to preservation of the lengths of all vectors since 〈v, w〉 = 1
2 (〈v+w, v+w〉−〈v, v〉−〈w,w〉).

A diffeomorphism f : (M, g)→ (N,h) of two Riemannian manifolds is an isometry if DF (p) : TpM → Tf(p)N
is a linear isometry for all p ∈M .

Example 3.9. Isometry f : H2 → B2 given by f(z) = z−i
z+i .

Theorem 3.10. (Reparametrization). Let ϕ : [c, d] → [a, b] be a strictly monotonic smooth function,
γ : [a, b]→M a smooth curve. Then for c̃ = c ◦ ϕ : [c, d]→M (reparametrization of c) holds L(c) = L(c̃).

Definition 3.11. A differentiable curve c : [a, b]→M is called an arc-length parametrization if ||c′(t)|| = 1.

Every curve has an arc-length parametrization c̃(t) : [0, L(c|[a,b])] → M , c̃(t) = c ◦ ϕ(t), where ϕ−1(t) =
L(c|[a,t]).

Example 3.12. Length of vertical segments in H. Vertical half-lines are geodesics.

Definition 3.13. Define a distance d : M ×M → [0,∞) by d(p, q) = infγ{L(γ)}, where γ is a smooth
curve with end p and q.
A curve c(t) : [a, b]→M is geodesic if d(c(x), c(y)) = L(c|[x,y]) for all x, y ∈ [a, b] (x < y).

Remark 3.14. d turns (M, g) into a metric space.

Definition 3.15. If (X, d) is a metric space then any subset A ∈ X is also a metric space with the induced
metric d|A×A : A× S → [0,∞).

Example 3.16 Punctured Riemannian sphere: Rn with gx(v, w) = 4
(1+||x||2)2 〈v, w〉.



4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1 In Rn, given a vector field X =
∑
ai(p)

∂
∂xi
∈ X(Rn) and a vector v ∈ TpR

n define the

covariant derivative of X in direction v by ∇v(X) = lim
t→0

X(p+tv)−X(p)
t =

∑
v(ai)

∂
∂xi

∣∣
p
∈ TpRn.

Properties 4.2. In Rn, the covariant derivative∇vX satisfies properties (a)-(e) listed below in Definition 4.3
and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map ∇ : X(M) × X(M) → X(M), X,Y∇XY is called a
covariant derivative or affine connection if for all X,Y, Z ∈ X(M) and f, g ∈ C∞(M) holds

(a) ∇X(Y + Z) = ∇X(Y ) +∇X(Z)

(b) ∇X(fY ) = X(f)Y (p) + f(p)∇XY

(c) ∇fX+gY Z = f∇XZ + g∇Y Z

Theorem 4.4. (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian
manifold. There exists a unique covariant derivative ∇ on M with the additional properties for all X,Y, Z ∈
X(M):

(d) v(〈X,Y 〉) = 〈∇vX,Y 〉+ 〈X,∇vY 〉 (Riemannian property);

(e) ∇XY −∇yX = [X,Y ] (Torsion-free)

This connection is called Levi-Civita connection of (M, g).

Example 4.5. Levi-Civita connection in Rn and in M ⊂ Rn with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let ∇ be a Levi-Civita connection on (M, g) and ϕ : U → V a coordinate chart with
coordinates ϕ = (x1, . . . , xn). Then we have ∇ ∂

∂xi

∂
∂xj

(p) ∈ TpM . i.e. there exist uniquely determined

Γkij ∈ C∞(U) with ∇ ∂
∂xi

∂
∂xj

(p) =
∑n
k=1 Γkij

∂
∂xk

(p). These functions are called Christoffel symbols of ∇ with

respect to the chart ϕ.

They characterize ∇ since ∇ n∑
i=1

ai
∂

∂xi

n∑
j=1

bj
∂
∂xj

=
∑
i,j

ai
∂bj
∂xi

∂
∂xj

+
∑
i,j,k

aibjΓ
k
i,j

∂
∂xk

.

Proposition 4.7. Γkij = 1
2

∑
k

gks(gik,j + gjk,i − gij,k), where gab,c = ∂
∂xc

gab and (gij) = (gij)
−1.

In particular, Γkij = Γkji.

Example 4.8. In Rn, Γkij ≡ 0 for all i, j, k; Γkij in S2 ⊂ R3 with induced metric.

4.3 Parallel transport

Definition 4.9. Let c : (a, b)→ M be a differentiable curve. A map X : (a, b)→ TM with X(t) ∈ Tc(t)M
is called a vector field along c. Denote the space of all these maps by Xc(M).

Example 4.10. c′(t) ∈ Xc(M).



Proposition 4.11. Let (M, g) be a Riemannian manifold, ∇ be a Levi-Civita connection, c : (a, b) → M
be a differentiable curve. There exists a unique map D

∂t : Xc(M)→ Xc(M) satisfying

(a) D
∂t (X + Y ) = D

∂tX + D
∂tY

(b) D
∂t (fX) = f ′(t)X + f D∂tX, for all differentiable f : (a, b)→ R

(c) If X̃ ∈ X(M) is a local extension of X

(i.e. there exists t0 ∈ (a, b) and ε > 0 such that X(t) = X̃
∣∣
c(t)

for all t ∈ (t0 − ε, t0 + ε))

then (D∂tX)(t0) = ∇c′(t0)X̃.

This map D
∂t : Xc(M)→ Xc(M) is called the covariant derivative along the curve c.

Example 4.12. For a surface M ∈ R3 the condition D
∂t (c

′(t)) ≡ 0 is equivalent to c′′(t) ⊥ Tc(t)M , which is
in its turn the condition for c to be geodesic known from the course of Differential Geometry.

Definition 4.13. Let X ∈ Xc(M). If D
∂tX = 0 then X is said to be parallel along c.

Example 4.14. In Rn it means that X does not depend on the point p ∈ Rn.

Theorem 4.15. Let c : [a, b] → M be a smooth curve, v ∈ Tc(a)M . Then there exists a unique vector field
X ∈ Xc(M) with X(a) = v ∈ Tc(a)M .

Example 4.16. Parallel vector fields form a vector space of dimension n (for n-dimensional (M, g)).

Definition 4.17. Let c : [a, b] → M be a smooth curve, A linear map Pc : Tc(a)M → Tc(b)M called

parallel transport defined by Pc(v) = X(b) where X ∈ Xc(M) with X(a) = v, D
∂tX = 0.

Remark. (a) The parallel transport Pc depend on the curve c (not only on its endpoints).
(b) The parallel transport is a linear isometry Pc : Tc(a)M → Tc(b)M , i.e. gc(a)(v, w) = gc(b)(Pcv, Pcw).


