Riemannian Geometry, Michaelmas 2013.

Riemannian metric, Levi-Civita connection and parallel transport: outline

3 Riemannian metric

Definition 3.1. Let M be a smooth manifold. A <u>Riemannian metric</u> written $g_p(\cdot, \cdot)$ or $\langle \cdot, \cdot \rangle_p$ is a family of real inner products $g_p: T_pM \times T_pM \to \mathbf{R}$ depending smoothly on $p \in M$. A smooth manifold M with a Reimannian metric g is called a <u>Riemannian manifold</u> (M, g).

The should be write a recimaninal metric g is called a <u>recimaninal manifold</u> (1)

Examples 3.2–3.3. Euclidean metric in \mathbb{R}^n , induced metric on $M \in \mathbb{R}^n$.

Definition 3.4. Let (M, g) be a Riemannian manifold. For $v \in T_p M$ define the length of v by $0 \le ||v||_g = \sqrt{g_p(v, v)}$.

Suppose $c : [a, b] \to M$ is a smooth curve on M. Define the length of c by $L(c) = \int_a^b ||c'(t)|| dt$. (this does not depend on parametrization, see Theorem 3.10).

Remark 3.5. Let $M \in \mathbf{R}^n$ be a smooth manifold given by $f(x_1, \ldots, x_n) = a$. Let $p \in M$, $v \in T_p M$. Then v satisfies $\sum_{i=1}^n \frac{\partial f}{\partial x_i} v_i = 0$.

Example 3.6. three models of hyperbolic geometry:

model	notation	M	g
Hyperboloid	\mathbf{W}^n	$\{y \in \mathbf{R}^{n+1} \mid q(y,y) = -1, y_{n+1} > 0\}$ where $q(x,y) = \sum_{i=1}^{n} x_i y_i - x_{n+1} y_{n+1}$	$\langle v,w\rangle = q(v,w)$
Poincaré ball	\mathbf{B}^n	$\{x \in \mathbf{R}^n \mid x ^2 = \sum_{i=1}^n x_i^2 < 1\}$	$g_x(v,w) = \frac{4}{(1- x ^2)^2} \langle v,w \rangle$
Upper half-space	\mathbf{H}^n	$\{x \in \mathbf{R}^n \mid x_n > 1\}$	$g_x(v,w) = \frac{1}{x_n^2} \langle v,w \rangle$

Definition 3.7. Given two vector spaces V_1, V_2 with real inner products $(V_i, \langle \cdot, \cdot \rangle_i)$ we call a linear isomorphism $T: V_1 \to V_2$ a linear isometry if $\langle Tv, Tw \rangle_2 = \langle v, w \rangle_1$ for all $v, w \in V_1$.

This is equivalent to preservation of the lengths of all vectors since $\langle v, w \rangle = \frac{1}{2}(\langle v+w, v+w \rangle - \langle v, v \rangle - \langle w, w \rangle)$. A diffeomorphism $f: (M,g) \to (N,h)$ of two Riemannian manifolds is an <u>isometry</u> if $DF(p): T_pM \to T_{f(p)N}$ is a linear isometry for all $p \in M$.

Example 3.9. Isometry $f: \mathbf{H}^2 \to \mathbf{B}^2$ given by $f(z) = \frac{z-i}{z+i}$.

Theorem 3.10. (Reparametrization). Let $\varphi : [c,d] \to [a,b]$ be a strictly monotonic smooth function, $\gamma : [a,b] \to M$ a smooth curve. Then for $\tilde{c} = c \circ \varphi : [c,d] \to M$ (reparametrization of c) holds $L(c) = L(\tilde{c})$.

Definition 3.11. A differentiable curve $c : [a, b] \to M$ is called an <u>arc-length</u> parametrization if ||c'(t)|| = 1. Every curve has an arc-length parametrization $\tilde{c}(t) : [0, L(c|_{[a,b]})] \to M$, $\tilde{c}(t) = c \circ \varphi(t)$, where $\varphi^{-1}(t) = L(c|_{[a,t]})$.

Example 3.12. Length of vertical segments in H. Vertical half-lines are geodesics.

Definition 3.13. Define a <u>distance</u> $d: M \times M \to [0,\infty)$ by $d(p,q) = inf_{\gamma}\{L(\gamma)\}$, where γ is a smooth curve with end p and q.

A curve $c(t) : [a, b] \to M$ is geodesic if $d(c(x), c(y)) = L(c|_{[x,y]})$ for all $x, y \in [a, b]$ (x < y).

Remark 3.14. d turns (M, g) into a metric space.

Definition 3.15. If (X, d) is a metric space then any subset $A \in X$ is also a metric space with the induced metric $d|_{A \times A} : A \times S \to [0, \infty)$.

Example 3.16 Punctured Riemannian sphere: \mathbf{R}^n with $g_x(v, w) = \frac{4}{(1+||x||^2)^2} \langle v, w \rangle$.

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1 In \mathbf{R}^n , given a vector field $X = \sum a_i(p) \frac{\partial}{\partial x_i} \in \mathfrak{X}(\mathbf{R}^n)$ and a vector $v \in T_p \mathbf{R}^n$ define the covariant derivative of X in direction v by $\nabla_v(X) = \lim_{t \to 0} \frac{X(p+tv) - X(p)}{t} = \sum v(a_i) \frac{\partial}{\partial x_i} \Big|_p \in T_p \mathbf{R}^n$.

Properties 4.2. In \mathbb{R}^n , the covariant derivative $\nabla_v X$ satisfies properties (a)-(e) listed below in Definition 4.3 and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map $\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M), X, Y \nabla_X Y$ is called a <u>covariant derivative</u> or <u>affine connection</u> if for all $X, Y, Z \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$ holds

- (a) $\nabla_X(Y+Z) = \nabla_X(Y) + \nabla_X(Z)$
- (b) $\nabla_X(fY) = X(f)Y(p) + f(p)\nabla_X Y$
- (c) $\nabla_{fX+gY}Z = f\nabla_X Z + g\nabla_Y Z$

Theorem 4.4. (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian manifold. There exists a unique covariant derivative ∇ on M with the additional properties for all $X, Y, Z \in \mathfrak{X}(M)$:

(d) $v(\langle X, Y \rangle) = \langle \nabla_v X, Y \rangle + \langle X, \nabla_v Y \rangle$ (Riemannian property); (e) $\nabla_X Y - \nabla_u X = [X, Y]$ (Torsion-free)

This connection is called <u>Levi-Civita connection</u> of (M, g).

Example 4.5. Levi-Civita connection in \mathbb{R}^n and in $M \subset \mathbb{R}^n$ with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let ∇ be a Levi-Civita connection on (M, g) and $\varphi : U \to V$ a coordinate chart with coordinates $\varphi = (x_1, \ldots, x_n)$. Then we have $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}(p) \in T_p M$. i.e. there exist uniquely determined $\Gamma_{ij}^k \in C^{\infty}(U)$ with $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}(p) = \sum_{k=1}^n \Gamma_{ij}^k \frac{\partial}{\partial x_k}(p)$. These functions are called <u>Christoffel symbols</u> of ∇ with respect to the chart φ .

They characterize ∇ since $\nabla_{\sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i}} \sum_{j=1}^{n} b_j \frac{\partial}{\partial x_j} = \sum_{i,j} a_i \frac{\partial b_j}{\partial x_i} \frac{\partial}{\partial x_j} + \sum_{i,j,k} a_i b_j \Gamma_{i,j}^k \frac{\partial}{\partial x_k}.$

Proposition 4.7. $\Gamma_{ij}^k = \frac{1}{2} \sum_k g^{ks} (g_{ik,j} + g_{jk,i} - g_{ij,k})$, where $g_{ab,c} = \frac{\partial}{\partial x_c} g_{ab}$ and $(g^{ij}) = (g_{ij})^{-1}$. In particular, $\Gamma_{ij}^k = \Gamma_{ji}^k$.

Example 4.8. In \mathbf{R}^n , $\Gamma_{ij}^k \equiv 0$ for all i, j, k; Γ_{ij}^k in $S^2 \subset \mathbf{R}^3$ with induced metric.

4.3 Parallel transport

Definition 4.9. Let $c: (a, b) \to M$ be a differentiable curve. A map $X: (a, b) \to TM$ with $X(t) \in T_{c(t)}M$ is called a vector field along c. Denote the space of all these maps by $\mathfrak{X}_c(M)$.

Example 4.10. $c'(t) \in \mathfrak{X}_c(M)$.

Proposition 4.11. Let (M, g) be a Riemannian manifold, ∇ be a Levi-Civita connection, $c : (a, b) \to M$ be a differentiable curve. There exists a unique map $\frac{D}{\partial t} : \mathfrak{X}_c(M) \to \mathfrak{X}_c(M)$ satisfying

- (a) $\frac{D}{\partial t}(X+Y) = \frac{D}{\partial t}X + \frac{D}{\partial t}Y$
- (b) $\frac{D}{\partial t}(fX) = f'(t)X + f\frac{D}{\partial t}X$, for all differentiable $f: (a, b) \to \mathbf{R}$
- (c) If $\widetilde{X} \in \mathfrak{X}(M)$ is a local extension of X(i.e. there exists $t_0 \in (a, b)$ and $\varepsilon > 0$ such that $X(t) = \widetilde{X}|_{c(t)}$ for all $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$) then $(\frac{D}{\partial t}X)(t_0) = \nabla_{c'(t_0)}\widetilde{X}$.

This map $\frac{D}{\partial t}: \mathfrak{X}_c(M) \to \mathfrak{X}_c(M)$ is called the covariant derivative along the curve c.

Example 4.12. For a surface $M \in \mathbf{R}^3$ the condition $\frac{D}{\partial t}(c'(t)) \equiv 0$ is equivalent to $c''(t) \perp T_{c(t)}M$, which is in its turn the condition for c to be geodesic known from the course of Differential Geometry.

Definition 4.13. Let $X \in \mathfrak{X}_c(M)$. If $\frac{D}{\partial t}X = 0$ then X is said to be <u>parallel</u> along c.

Example 4.14. In \mathbb{R}^n it means that X does not depend on the point $p \in \mathbb{R}^n$.

Theorem 4.15. Let $c : [a, b] \to M$ be a smooth curve, $v \in T_{c(a)M}$. Then there exists a unique vector field $X \in \mathfrak{X}_c(M)$ with $X(a) = v \in T_{c(a)}M$.

Example 4.16. Parallel vector fields form a vector space of dimension n (for *n*-dimensional (M, g)).

Definition 4.17. Let $c : [a,b] \to M$ be a smooth curve, A linear map $P_c : T_{c(a)}M \to T_{c(b)}M$ called parallel transport defined by $P_c(v) = X(b)$ where $X \in \mathfrak{X}_c(M)$ with X(a) = v, $\frac{D}{\partial t}X = 0$.

Remark. (a) The parallel transport P_c depend on the curve c (not only on its endpoints). (b) The parallel transport is a linear isometry $P_c: T_{c(a)}M \to T_{c(b)}M$, i.e. $g_{c(a)}(v,w) = g_{c(b)}(P_cv, P_cw)$.