
Riemannian Geometry, Michaelmas 2013.

Geodesics

5.1 Geodesics as solutions to ODEs

Definition 5.1. Given (M, g), the curve c : [a, b]→M is a geodesic if D
dtc
′(t) = 0 for all t ∈ [a, b].

Lemma 5.2. If c is a geodesic that c is parametrized proportional to the arc length.

Theorem 5.3. Given a Riemannian manifold (M, g), p ∈ M , v ∈ TpM , there exists ε > 0 and a unique
geodesic c : (−ε, ε)→M such that c(0) = p, c′(0) = v.

Example 5.4–5.5 Geodesics in Euclidean space, on a sphere, and in the upper half-plane model H2.

Remark. Differential equations for geodesics: c′′k(t) = −
∑
ij ci(t)cj(t)Γ

k
ij(c(t)), k = 1, . . . , n.

5.2 Geodesics as distance-minimizing curves.
First variation formula of the length.

Definition 5.6. Let c : [a, b] → M be a smooth curve. A smooth map F : (−ε, ε) × [a, b] → M is a
differentiable variation of c if F (0, t) = c(t).
Variation is proper if F (s, a) = c(a) and F (s, b) = c(b) for all s ∈ (−ε, ε).
Variation may be considered as a family of the curves Fs(t) = F (s, t).

Definition 5.7. A variation vector field X of the variation F is defined by X(t) = ∂F
∂s (0, t).

Definition 5.8. The length and energy of variation are

l(s) :=
b∫
a

||∂F∂t (s, t)||dt, l : (−ε, ε)→ [0,∞); E(s) :=
b∫
a

||∂F∂t (s, t)||2dt, E : (−ε, ε)→ [0,∞).

Remark: l(s) is the length of the curve Fs(t).

Theorem 5.9. A smooth curve c is geodesic if and only if l′(0) = 0 for each proper variation and c is
parametrized proportionally to the arc length.

Corollary 5.10. Let c : [a, b] → M be the shortest curve from c(a) to c(b), and c is parametrized propor-
tionally to the arc length. Then c is geodesic.

Lemma 5.11. (Symmetry Lemma). Let W ⊂ R2 be an open set and F : W →M , (s, t) 7→ F (s, t) be a
differentiable map. Let D

dt be the covariant derivative along Fs(t) and D
ds be the covariant derivative along

Ft(s). Then D
dt
∂F
∂s = D

ds
∂F
∂t .

Theorem 5.12. (First variation formula of the length). Let F : (−ε, ε) × [a, b] → M be a variation
of c(t), c′(t) 6= 0. Let X(t) be its variation vector field and l : (−ε, ε)→ [0,∞) its length. Then

l′(0) =

∫ b

a

1

||c′(t)||
d

dt
〈X(t), c′(t)〉dt−

∫ b

a

1

||c′(t)||
〈X(t),

D

dt
c′(t)〉dt.

Corollary 5.13.

• If in addition c(t) is parametrized proportionally to the arc length, ||c′(t)|| ≡ c
then l′(0) = 1

c 〈X(b), c′(b)〉 − 1
c 〈X(a), c′(a)〉 − 1

c

∫ b
a
〈X(t), Ddtc

′(t)〉dt;

• if c(t) is geodesic, then l′(0) = 1
c 〈X(b), c′(b)〉 − 1

c 〈X(a), c′(a)〉;

• if F is proper and c is parametrised proportionally to the arc length, then l′(0) = − 1
c

∫ b
a
〈X(t), Ddtc

′(t)〉dt;

• if F is proper and c is geodesic, then l′(0) = 0.

Lemma 5.14. Any vector field X along c(t) with X(a) = X(b) = 0 is a variation vector field for some
proper variation F .
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5.3 Exponential map and Gauss Lemma

Let p ∈M , v ∈ TpM . Denote by cv(t) the unique maximal (by inclusion) geodesic with cv(0) = p, c′v(0) = v.

Definition 5.15. If cv(1) exists, define expp : TpM →M by v 7→ cv(1), the exponential map at p.

Example 5.16. Exponential map on the sphere S2: length of cv from p to cv(1) equals to ||v||.

Notation. Br(Op) = {v ∈ TpM
∣∣ ||v|| < r} ⊂ TpM is a ball of radius r centered at p = Op.

Proposition 5.17. (without proof).
For any p ∈ (M, g) there exists an r > 0 such that expp : Br(Op)→ expp(Br(Op)) is a diffeomorphism.

Example. On S2 the set expp(Bπ/2(Op)) is a hemisphere, so that every geodesic starting from p is orthogonal
to the boundary of this set.

Theorem 5.18. (Gauss Lemma). Let (M, g) be a Riemannian manifold, p ∈ M and let ε > 0 be such
that expp : Bε(Op)→ expp(Bε(Op)) is a diffeomorphism. Define a hypersurface Aδ := {expp(w) | ||w|| = δ}
for all 0 < δ < ε. Then every radial geodesic c : t→ expp(tv), t ≥ 0 is orthogonal to Aδ.

Remark 5.19. The curve cv(t) = expp(tv) is indeed a geodesic!

Lemma 5.19. Let p ∈ M and let ε > 0 be such that expp : Bε(Op) → expp(Bε(Op)) is a diffeomorphism.
Take γ : [0, 1] → expp(Bε(Op)). Then there exists a curve v(s) : [0, 1] → Tp(M), ||v(s)|| = 1 and a
non-negative function r(s) : [0, 1]→ R+ such that γ(s) = expp(r(s) · v(s)).

Lemma 5.20. Let r : [0, 1]→ R, v : [0, 1]→ SpM = w ∈ TpM | ||w|| = 1}. Define γ : [0, 1]→ expp(Bε(Op))
by γ(s) = expp(r(s)v(s)). Then l(γ) ≥ |r(1) − r(0)| for the length l(γ) of γ and the equality holds if and
only if γ is a reparametrisation of a radial geodesic (i.e. if and only if v(s) ≡ const = v(0), r(s) is increasing
or decreasing function).

Corollary 5.21. Given a point p ∈M , there exists ε > 0 such that for any q ∈ Bε(Op) there exists a curve
c(t) connecting p and q and satisfying l(c) = d(p, q). (This curve is a radial geodesic).

Notation. Denote Bε(p) := expp(Bε(Op)) ⊂M , a geodesic ball and Sε(p) = ∂Bε(p), a geodesic sphere.
Note, Bε(p) = {q ∈M | d(p, q) ≤ ε}.

Proposition 5.22. (without proof). Let p ∈ M . Then there exists an open set Up, p ∈ U and an ε such
that for any q ∈ U the map expq : Bε(Oq)→ Bε(q) are diffeomorphisms.

Remark 5.23. (Naturality of exponential map).
Let ϕ : (M, g)→ (N,h) be an isometry. Then Dϕ = exp−1ϕ(p) ◦ ϕ ◦ expp.

5.4 Hopf-Rinow Theorem

Definition 5.24. A geodesic c : [a, b]→M is minimal if l(c) = d(c(a), c(b)).
A geodesic c : R→M is minimal if its restriction c|[a,b] is minimal for each segment [a, b] ∈ R.

Example: no minimal geodesics on S2, all geodesics are minimal in E2 and H2.

Definition 5.25. A Riemannian manifold (M, g) is geodesically complete if every geodesic c : [a, b] → M
can be extended to a geodesic c̃ : R→M (i.e. can be extended infinitely in both directions).
Equivalently: if expp is defined on TpM for all p ∈M .

Theorem 5.26. (Hopf-Rinow) Let (M, g) be a connected Riemannian manifold with distance d. Then
the following conditions are equivalent:

(a) (M, g) is complete (i.e. every Cauchy sequence converges);

(b) every closed and bounded subset is compact

(c) (M, g) is geodesically complete.

Moreover, every of the conditions above imply

(d) for every p, q ∈M there exists a minimal geodesic connecting p and q.
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Remark. Theorem 5.24 uses the following notions defined in a metric space:

• {xi}, xi ∈M is a Cauchy sequence if ∀ε ∃N : ∀m,n > N d(xm, xn) < ε;

• a set A ⊂M is bounded if A ⊂ Br(p) for some r > 0, p ∈M ;

• a set A ⊂M is closed if {xn ∈ A, xn → x} ⇒ x ∈ A;

• a set A ⊂M is compact if each open cover has a finite subcover;

• a set A ⊂M is sequentially compact if each sequence has a converging subsequence.

Some properties: 1. A compact set is sequentially compact, bounded, closed.
2. A compact metric space is complete.
3. In a complete metric space, a sequentially compact set is compact.

6 Integration on Riemannian manifolds

Definition 6.1 Let (M, g) be a Riemannian manifold and f : M → R be a function with supp(f) ⊂ U ,
where ϕ : U → V is a coordinate chart, ϕ = (x1, . . . , xn). Then define∫

M

f =

∫
M

fd Vol =

∫
U

fd Vol =

∫
V

f ◦ ϕ−1(x)
√
det(gij) ◦ ϕ−1(x)dx,

where gij(p) = 〈 ∂∂xi |p,
∂
∂xj
|p〉 for all p ∈ U .

Proposition 6.2. Definition 6.1 does not depend on the choice of coordinates.

Definition 6.3. A volume of a subset A ⊂ U ⊂M is defined by

VolA =

∫
M

1A d V ol =

∫
A

d Vol =

∫
ϕ(A)

√
det(gij) ◦ ϕ−1(x)dx,

where 1A : M → {0, 1}, 1A(p) = 1 if p ∈ A and 0 otherwise.

Example 6.4. Integration on H2.

Definition 6.5. A partition of unity is a set of smooth functions ϕα : M → [0, 1] such that
∑
α ϕα(p) = 1

∀p ∈ M and for every p ∈ M there exists an open set Up, p ∈ Up such that for all but finitely many of α
holds ϕα|Up ≡ 0.

Definition 6.6. Given an open cover {Uα} of M , the set of functions {ϕα} subordinates to {Uα}
if supp ϕα ⊂ Uα for all α.

Fact 6.7. For any countable atlas Uα there exists a partition of unity which subordinates to {Uα}.

Corollary 6.8. For a Riemannian manifold M with countable atlas and subordinate partition of unity {ϕα}
one has

∫
M
fd Vol =

∑
α

∫
Uα
f · ϕαd Vol.

Remark 6.9. In practice, one chooses (if possible) a chart U ⊂M such that Vol(M \ U) = 0,
then

∫
M
f d Vol =

∫
U
f d Vol.

Remark 6.10. Isometries preserve the volume,
i.e. if ψ : (M, g)→ (N,h) is an isometry then

∫
N
f d Vol =

∫
M
f ◦ ψ d Vol.
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