Riemannian Geometry, Michaelmas 2013. Geodesics

5.1 Geodesics as solutions to ODEs

Definition 5.1. Given (M, g), the curve $c : [a, b] \to M$ is a geodesic if $\frac{D}{dt}c'(t) = 0$ for all $t \in [a, b]$.

Lemma 5.2. If c is a geodesic that c is parametrized proportional to the arc length.

Theorem 5.3. Given a Riemannian manifold (M, g), $p \in M$, $v \in T_pM$, there exists $\varepsilon > 0$ and a unique geodesic $c : (-\varepsilon, \varepsilon) \to M$ such that c(0) = p, c'(0) = v.

Example 5.4–5.5 Geodesics in Euclidean space, on a sphere, and in the upper half-plane model \mathbf{H}^2 .

Remark. Differential equations for geodesics: $c_k''(t) = -\sum_{ij} c_i(t)c_j(t)\Gamma_{ij}^k(c(t)), \quad k = 1, \dots, n.$

5.2 Geodesics as distance-minimizing curves. First variation formula of the length.

Definition 5.6. Let $c : [a,b] \to M$ be a smooth curve. A smooth map $F : (-\varepsilon, \varepsilon) \times [a,b] \to M$ is a differentiable variation of c if F(0,t) = c(t). Variation is proper if F(s,a) = c(a) and F(s,b) = c(b) for all $s \in (-\varepsilon, \varepsilon)$. Variation may be considered as a family of the curves $F_s(t) = F(s,t)$.

Definition 5.7. A variation vector field X of the variation F is defined by $X(t) = \frac{\partial F}{\partial s}(0, t)$.

Definition 5.8. The length and energy of variation are

$$l(s) := \int_{a}^{b} ||\frac{\partial F}{\partial t}(s,t)||dt, \quad l: (-\varepsilon,\varepsilon) \to [0,\infty); \qquad \qquad E(s) := \int_{a}^{b} ||\frac{\partial F}{\partial t}(s,t)||^{2}dt, \quad E: (-\varepsilon,\varepsilon) \to [0,\infty).$$

Remark: l(s) is the length of the curve $F_s(t)$.

Theorem 5.9. A smooth curve c is geodesic if and only if l'(0) = 0 for each proper variation and c is parametrized proportionally to the arc length.

Corollary 5.10. Let $c : [a, b] \to M$ be the shortest curve from c(a) to c(b), and c is parametrized proportionally to the arc length. Then c is geodesic.

Lemma 5.11. (Symmetry Lemma). Let $W \subset \mathbb{R}^2$ be an open set and $F: W \to M$, $(s,t) \mapsto F(s,t)$ be a differentiable map. Let $\frac{D}{dt}$ be the covariant derivative along $F_s(t)$ and $\frac{D}{ds}$ be the covariant derivative along $F_t(s)$. Then $\frac{D}{dt}\frac{\partial F}{\partial s} = \frac{D}{ds}\frac{\partial F}{\partial t}$.

Theorem 5.12. (First variation formula of the length). Let $F : (-\varepsilon, \varepsilon) \times [a, b] \to M$ be a variation of $c(t), c'(t) \neq 0$. Let X(t) be its variation vector field and $l : (-\varepsilon, \varepsilon) \to [0, \infty)$ its length. Then

$$l'(0) = \int_{a}^{b} \frac{1}{||c'(t)||} \frac{d}{dt} \langle X(t), c'(t) \rangle dt - \int_{a}^{b} \frac{1}{||c'(t)||} \langle X(t), \frac{D}{dt} c'(t) \rangle dt.$$

Corollary 5.13.

- If in addition c(t) is parametrized proportionally to the arc length, $||c'(t)|| \equiv c$ then $l'(0) = \frac{1}{c} \langle X(b), c'(b) \rangle - \frac{1}{c} \langle X(a), c'(a) \rangle - \frac{1}{c} \int_{a}^{b} \langle X(t), \frac{D}{dt}c'(t) \rangle dt$;
- if c(t) is geodesic, then $l'(0) = \frac{1}{c} \langle X(b), c'(b) \rangle \frac{1}{c} \langle X(a), c'(a) \rangle;$
- if F is proper and c is parametrised proportionally to the arc length, then $l'(0) = -\frac{1}{c} \int_a^b \langle X(t), \frac{D}{dt}c'(t) \rangle dt$;
- if F is proper and c is geodesic, then l'(0) = 0.

Lemma 5.14. Any vector field X along c(t) with X(a) = X(b) = 0 is a variation vector field for some proper variation F.

5.3 Exponential map and Gauss Lemma

Let $p \in M$, $v \in T_p M$. Denote by $c_v(t)$ the unique maximal (by inclusion) geodesic with $c_v(0) = p$, $c'_v(0) = v$.

Definition 5.15. If $c_v(1)$ exists, define $exp_p: T_pM \to M$ by $v \mapsto c_v(1)$, the exponential map at p.

Example 5.16. Exponential map on the sphere S^2 : length of c_v from p to $c_v(1)$ equals to ||v||.

Notation. $B_r(O_p) = \{v \in T_pM \mid ||v|| < r\} \subset T_pM$ is a ball of radius r centered at $p = O_p$.

Proposition 5.17. (without proof).

For any $p \in (M,g)$ there exists an r > 0 such that $exp_p : B_r(O_p) \to exp_p(B_r(O_p))$ is a diffeomorphism.

Example. On S^2 the set $exp_p(B_{\pi/2}(O_p))$ is a hemisphere, so that every geodesic starting from p is orthogonal to the boundary of this set.

Theorem 5.18. (Gauss Lemma). Let (M, g) be a Riemannian manifold, $p \in M$ and let $\varepsilon > 0$ be such that $exp_p : B_{\varepsilon}(O_p) \to exp_p(B_{\varepsilon}(O_p))$ is a diffeomorphism. Define a hypersurface $A_{\delta} := \{exp_p(w) \mid ||w|| = \delta\}$ for all $0 < \delta < \varepsilon$. Then every <u>radial</u> geodesic $c : t \to exp_p(tv), t \ge 0$ is orthogonal to A_{δ} .

Remark 5.19. The curve $c_v(t) = exp_p(tv)$ is indeed a geodesic!

Lemma 5.19. Let $p \in M$ and let $\varepsilon > 0$ be such that $exp_p : B_{\varepsilon}(O_p) \to exp_p(B_{\varepsilon}(O_p))$ is a diffeomorphism. Take $\gamma : [0,1] \to exp_p(B_{\varepsilon}(O_p))$. Then there exists a curve $v(s) : [0,1] \to T_p(M)$, ||v(s)|| = 1 and a non-negative function $r(s) : [0,1] \to \mathbf{R}_+$ such that $\gamma(s) = exp_p(r(s) \cdot v(s))$.

Lemma 5.20. Let $r : [0,1] \to \mathbf{R}$, $v : [0,1] \to S_p M = w \in T_p M \mid ||w|| = 1$ }. Define $\gamma : [0,1] \to exp_p(B_{\varepsilon}(O_p))$ by $\gamma(s) = exp_p(r(s)v(s))$. Then $l(\gamma) \ge |r(1) - r(0)|$ for the length $l(\gamma)$ of γ and the equality holds if and only if γ is a reparametrisation of a radial geodesic (i.e. if and only if $v(s) \equiv const = v(0)$, r(s) is increasing or decreasing function).

Corollary 5.21. Given a point $p \in M$, there exists $\varepsilon > 0$ such that for any $q \in B_{\varepsilon}(O_p)$ there exists a curve c(t) connecting p and q and satisfying l(c) = d(p,q). (This curve is a radial geodesic).

Notation. Denote $B_{\varepsilon}(p) := exp_p(B_{\varepsilon}(O_p)) \subset M$, a geodesic ball and $S_{\varepsilon}(p) = \partial B_{\varepsilon}(p)$, a geodesic sphere. Note, $B_{\varepsilon}(p) = \{q \in M \mid d(p,q) \le \varepsilon\}$.

Proposition 5.22. (without proof). Let $p \in M$. Then there exists an open set U_p , $p \in U$ and an ε such that for any $q \in U$ the map $exp_q : B_{\varepsilon}(O_q) \to B_{\varepsilon}(q)$ are diffeomorphisms.

Remark 5.23. (Naturality of exponential map). Let $\varphi : (M, g) \to (N, h)$ be an isometry. Then $D\varphi = exp_{\varphi(p)}^{-1} \circ \varphi \circ exp_p$.

5.4 Hopf-Rinow Theorem

Definition 5.24. A geodesic $c : [a, b] \to M$ is <u>minimal</u> if l(c) = d(c(a), c(b)). A geodesic $c : \mathbf{R} \to M$ is <u>minimal</u> if its restriction $c|_{[a,b]}$ is minimal for each segment $[a, b] \in \mathbf{R}$.

Example: no minimal geodesics on S^2 , all geodesics are minimal in \mathbf{E}^2 and \mathbf{H}^2 .

Definition 5.25. A Riemannian manifold (M, g) is geodesically complete if every geodesic $c : [a, b] \to M$ can be extended to a geodesic $\tilde{c} : \mathbf{R} \to M$ (i.e. can be extended infinitely in both directions). Equivalently: if exp_p is defined on T_pM for all $p \in M$.

Theorem 5.26. (Hopf-Rinow) Let (M, g) be a connected Riemannian manifold with distance d. Then the following conditions are equivalent:

- (a) (M, g) is complete (i.e. every Cauchy sequence converges);
- (b) every closed and bounded subset is compact
- (c) (M, g) is geodesically complete.

Moreover, every of the conditions above imply

(d) for every $p, q \in M$ there exists a minimal geodesic connecting p and q.

Remark. Theorem 5.24 uses the following notions defined in a metric space:

- $\{x_i\}, x_i \in M$ is a Cauchy sequence if $\forall \varepsilon \exists N : \forall m, n > N \ d(x_m, x_n) < \varepsilon;$
- a set $A \subset M$ is <u>bounded</u> if $A \subset B_r(p)$ for some $r > 0, p \in M$;
- a set $A \subset M$ is closed if $\{x_n \in A, x_n \to x\} \Rightarrow x \in A;$
- a set $A \subset M$ is compact if each open cover has a finite subcover;
- a set $A \subset M$ is sequentially compact if each sequence has a converging subsequence.

Some properties: 1. A compact set is sequentially compact, bounded, closed.

- 2. A compact metric space is complete.
- 3. In a complete metric space, a sequentially compact set is compact.

6 Integration on Riemannian manifolds

Definition 6.1 Let (M, g) be a Riemannian manifold and $f : M \to \mathbf{R}$ be a function with $supp(f) \subset U$, where $\varphi : U \to V$ is a coordinate chart, $\varphi = (x_1, \ldots, x_n)$. Then define

$$\int_{M} f = \int_{M} f d \, Vol = \int_{U} f d \, Vol = \int_{V} f \circ \varphi^{-1}(x) \sqrt{\det(g_{ij}) \circ \varphi^{-1}(x)} dx$$

where $g_{ij}(p) = \langle \frac{\partial}{\partial x_i} |_p, \frac{\partial}{\partial x_j} |_p \rangle$ for all $p \in U$.

Proposition 6.2. Definition 6.1 does not depend on the choice of coordinates.

Definition 6.3. A <u>volume</u> of a subset $A \subset U \subset M$ is defined by

$$VolA = \int_{M} 1_{A} \ d \ Vol = \int_{A} d \ Vol = \int_{\varphi(A)} \sqrt{\det(g_{ij}) \circ \varphi^{-1}(x)} dx,$$

where $1_A: M \to \{0, 1\}, 1_A(p) = 1$ if $p \in A$ and 0 otherwise.

Example 6.4. Integration on \mathbf{H}^2 .

Definition 6.5. A partition of unity is a set of smooth functions $\varphi_{\alpha} : M \to [0, 1]$ such that $\sum_{\alpha} \varphi_{\alpha}(p) = 1$ $\forall p \in M$ and for every $p \in M$ there exists an open set $U_p, p \in U_p$ such that for all but finitely many of α holds $\varphi_{\alpha}|_{U_p} \equiv 0$.

Definition 6.6. Given an open cover $\{U_{\alpha}\}$ of M, the set of functions $\{\varphi_{\alpha}\}$ <u>subordinates</u> to $\{U_{\alpha}\}$ if $\overline{supp \varphi_{\alpha}} \subset U_{\alpha}$ for all α .

Fact 6.7. For any countable atlas U_{α} there exists a partition of unity which subordinates to $\{U_{\alpha}\}$.

Corollary 6.8. For a Riemannian manifold M with countable atlas and subordinate partition of unity $\{\varphi_{\alpha}\}$ one has $\int_{M} f d \ Vol = \sum_{\alpha} \int_{U_{\alpha}} f \cdot \varphi_{\alpha} d \ Vol$.

Remark 6.9. In practice, one chooses (if possible) a chart $U \subset M$ such that $Vol(M \setminus U) = 0$, then $\int_M f \, d \, Vol = \int_U f \, d \, Vol$.

Remark 6.10. Isometries preserve the volume, i.e. if $\psi : (M,g) \to (N,h)$ is an isometry then $\int_N f \, d \, Vol = \int_M f \circ \psi \, d \, Vol$.