Riemannian Geometry, Michaelmas 2013.

Geodesics

5.1 Geodesics as solutions to ODEs
Definition 5.1. Given (M, g), the curve c: [a,b] — M is a geodesic if 2¢/(t) =0 for all t € [a, b].
Lemma 5.2. If ¢ is a geodesic that ¢ is parametrized proportional to the arc length.

Theorem 5.3. Given a Riemannian manifold (M,g), p € M, v € T,M, there exists ¢ > 0 and a unique
geodesic ¢ : (—e,e) — M such that ¢(0) = p, ¢/(0) = v.

Example 5.4-5.5 Geodesics in Euclidean space, on a sphere, and in the upper half-plane model H?.
Remark. Differential equations for geodesics: cj/(t) = —>_,; ci(t Jei(OTF;(e(t), k=1,...,n

5.2 Geodesics as distance-minimizing curves.
First variation formula of the length.

Definition 5.6. Let ¢ : [a,b] — M be a smooth curve. A smooth map F' : (—¢,e) X [a,b] - M is a
differentiable variation of ¢ if F'(0,t) = ¢(t).

Variation is proper if F(s,a) = c¢(a) and F(s,b) = ¢(b) for all s € (—¢,¢).

Variation may be considered as a family of the curves F(t) = F(s,t).

Definition 5.7. A variation vector field X of the variation F is defined by X (t) = %—5(0, t).

Deﬁnition 5.8. The length and energy of variation are

b
f || (s,t)||dt, 1:(—¢e,e) — [0,00); E(s):= [ ||%—f(s,t)||2dt, E:(—¢,e) — [0,00).

a

Remark: [(s) is the length of the curve F(t).

Theorem 5.9. A smooth curve ¢ is geodesic if and only if I’(0) = 0 for each proper variation and c is
parametrized proportionally to the arc length.

Corollary 5.10. Let ¢ : [a,b] — M be the shortest curve from c(a) to ¢(b), and ¢ is parametrized propor-
tionally to the arc length. Then c is geodesic.

Lemma 5.11. (Symmetry Lemma). Let W C R? be an open set and F : W — M, (s,t) — F(s,t) be a
differentiable map. Let ; be the covariant derivative along F(t) and % be the covariant derivative along

Fi(s). Then B9F — DL
Theorem 5.12. (First variation formula of the length). Let F : (—¢,¢) X [a,b] = M be a variation
of ¢(t), ¢/ (t) # 0. Let X(t) be its variation vector field and [ : (—¢,¢) — [0, 00) its length. Then
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Corollary 5.13.

e If in addition ¢(t) is parametrized proportionally to the arc length [l ()] = ¢
then I'(0) = L(X(b),¢ (b)) = 1(X(a),¢'(a)) = L [ (X (1), 2 (£))dt;

o if ¢(t) is geodesic, then I'(0) = %(X(b),c’(b» - %(X(a), d(a));

P(X (1), B (b)) dt;

e if Fis proper and c is parametrised proportionally to the arc length, then I'(0) = — < / ) 5

a

e if F is proper and c is geodesic, then I'(0) = 0.

Lemma 5.14. Any vector field X along c¢(t) with X (a) = X(b) = 0 is a variation vector field for some
proper variation F'.



5.3 Exponential map and Gauss Lemma
Let p € M, v € T,M. Denote by c,(t) the unique maximal (by inclusion) geodesic with ¢,(0) = p, ¢, (0) = v.
Definition 5.15. If ¢,(1) exists, define exp, : T,M — M by v — ¢,(1), the exponential map at p.

Example 5.16. Exponential map on the sphere S?: length of ¢, from p to ¢,(1) equals to ||v]|.
Notation. B,(0,) = {v € T,M | ||v|| <r} C T,M is a ball of radius r centered at p = O,.

Proposition 5.17. (without proof).
For any p € (M, g) there exists an r > 0 such that exp, : B,.(0p) — exp,(B,(0,)) is a diffecomorphism.

Example. On S? the set exp,(By/2(Op)) is a hemisphere, so that every geodesic starting from p is orthogonal
to the boundary of this set.

Theorem 5.18. (Gauss Lemma). Let (M, g) be a Riemannian manifold, p € M and let € > 0 be such
that exp, : B-(0p) — exp,y(B:(0,)) is a diffeomorphism. Define a hypersurface As := {exp,(w) | ||w|| = 6}
for all 0 < § < e. Then every radial geodesic ¢ : t — exp,(tv), t > 0 is orthogonal to As.

Remark 5.19. The curve ¢,(t) = exp,(tv) is indeed a geodesic!

Lemma 5.19. Let p € M and let € > 0 be such that exp, : B-(O,) — exp,(B:(0,)) is a diffeomorphism.
Take v : [0,1] — expp(B:(0p)). Then there exists a curve v(s) : [0,1] — T,(M), |lv(s)]| = 1 and a
non-negative function r(s) : [0,1] — R4 such that v(s) = exp,(r(s) - v(s)).

Lemma 5.20. Let r: [0,1] = R, v : [0,1] = S,M =w € T,M | ||w|| = 1}. Define v : [0, 1] — exp,(B:(0,))
by v(s) = expy(r(s)v(s)). Then I(y) > |r(1) — r(0)| for the length I(+) of v and the equality holds if and
only if v is a reparametrisation of a radial geodesic (i.e. if and only if v(s) = const = v(0), r(s) is increasing
or decreasing function).

Corollary 5.21. Given a point p € M, there exists ¢ > 0 such that for any ¢ € B.(O,) there exists a curve
¢(t) connecting p and ¢ and satisfying I(c) = d(p, ¢). (This curve is a radial geodesic).

Notation. Denote B:(p) := exp,(B:(0,)) C M, a geodesic ball and S, (p) = 9B:(p), a geodesic sphere.
Note, Be(p) = {g € M [ d(p,q) < e}.

Proposition 5.22. (without proof). Let p € M. Then there exists an open set Uy, p € U and an ¢ such
that for any ¢ € U the map exp, : B:(O,) — B:(q) are diffeomorphisms.

Remark 5.23. (Naturality of exponential map).
Let ¢ : (M, g) — (N, h) be an isometry. Then Dy = exp;(lp) 0 (0 expp.

5.4 Hopf-Rinow Theorem
Definition 5.24. A geodesic c¢: [a,b] — M is minimal if I(¢) = d(c(a), c¢(b)).
A geodesic ¢ : R — M is minimal if its restriction c[(, 5 is minimal for each segment [a, b] € R.

Example: no minimal geodesics on S2, all geodesics are minimal in E? and H2.

Definition 5.25. A Riemannian manifold (M, g) is geodesically complete if every geodesic ¢ : [a,b] = M
can be extended to a geodesic ¢ : R — M (i.e. can be extended infinitely in both directions).
Equivalently: if exp, is defined on T, M for all p € M.

Theorem 5.26. (Hopf-Rinow) Let (M, g) be a connected Riemannian manifold with distance d. Then
the following conditions are equivalent:

(a) (M, g) is complete (i.e. every Cauchy sequence converges);
(b) every closed and bounded subset is compact

(¢) (M,g) is geodesically complete.

Moreover, every of the conditions above imply

(d) for every p,q € M there exists a minimal geodesic connecting p and gq.



Remark. Theorem 5.24 uses the following notions defined in a metric space:

o {x;}, z; € M is a Cauchy sequence if Ve AN :Vm,n > N d(z,,z,) < &;

a set A C M is bounded if A C B,.(p) for some r > 0, p € M,

aset A C M is closed if {z, € A,x,, =z} = x € A;

a set A C M is compact if each open cover has a finite subcover;

a set A C M is sequentially compact if each sequence has a converging subsequence.

Some properties: 1. A compact set is sequentially compact, bounded, closed.
2. A compact metric space is complete.
3. In a complete metric space, a sequentially compact set is compact.

6 Integration on Riemannian manifolds

Definition 6.1 Let (M, g) be a Riemannian manifold and f : M — R be a function with supp(f) C U,
where ¢ : U — V is a coordinate chart, ¢ = (x1,...,2,). Then define

| =] saver= [ gaver= [ gootw) fdet(ay) o o )i,

ps 50 |p) for all p € U

where g;;(p) = <6%i

Proposition 6.2. Definition 6.1 does not depend on the choice of coordinates.

Definition 6.3. A volume of a subset A C U C M is defined by

VolA:/ 1AdVol:/ dVol:/ Vdet(gi) o o= (x)da,
M A ©(A)

where 14 : M — {0,1}, 14(p) =1 if p € A and 0 otherwise.

Example 6.4. Integration on H?.

Definition 6.5. A partition of unity is a set of smooth functions ¢, : M — [0,1] such that > ¢.(p) =1
Vp € M and for every p € M there exists an open set U,, p € U, such that for all but finitely many of «
holds ¢4 |v, = 0.

Definition 6.6. Given an open cover {U,} of M, the set of functions {¢,} subordinates to {U,}
if supp @o C U, for all a.

Fact 6.7. For any countable atlas U, there exists a partition of unity which subordinates to {U,}.

Corollary 6.8. For a Riemannian manifold M with countable atlas and subordinate partition of unity {p, }
one has [,, fd Vol =3 qu f - vad Vol.

Remark 6.9. In practice, one chooses (if possible) a chart U C M such that Vol(M \ U) =0,
then [, f d Vol = [, f d Vol.

Remark 6.10. Isometries preserve the volume,
ie. if ¢ : (M,g) = (N,h) is an isometry then fo d Vol = fo o d Vol.



