Riemannian Geometry, Epiphany 2014

Term 1: overview

Notion	Natation	What's that?	Picture	In coordinates
Smooth manifold	M	Smooth atlas Hausdorffness	smooth	(x_1,\ldots,x_n)
Tangent Space	T_pM	Linear space of directional derivatives	$ \overbrace{\bullet p \in M}^{T_p M} $	$\langle \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \rangle$
Tangent bundle	TM	$TM = \bigcup_{p \in M} T_p M$		
Vector field	X	Choice of vector in each T_pM (depends on p smoothly)		$X(p) = \sum_{i=1}^{n} f_i(p) \frac{\partial}{\partial x_i} \Big _{p}$
Lie bracket	$\mathfrak{X}(M)$ $[X,Y]$	All vector fields on M $[X,Y](f) = XY(f) - YX(f)$		
Riemannian metric	$g_p(\cdot, \cdot)$ or $<\cdot, \cdot>_p$	Inner product on each T_pM smoothly depending on p $ v = \sqrt{g_p(v,v)}, \text{for } v \in T_pM$ $l(c) = \int_a^b c'(t) dt, \text{for a curve } c : [a,b] \to M$		$n \times n \text{ matrix } (g_{ij})$ $g_{ij}(p) = g_p(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j})$
Affine connection	$\nabla_X Y$	A map $\mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$, $(X,Y) \mapsto \nabla_X Y$ linear by X,Y and satisfying Leibniz rule: $\nabla_X (fY) = X(f)Y(p) + f(p)\nabla_X Y$		
Levi-Civita connection		Torsion-free Riemannian affine connection, i.e. affine connection satisfying: $\nabla_X Y - \nabla_Y X = [X,Y] \text{and} Z(\langle X,Y\rangle) = \langle \nabla_Z X,Y\rangle + \langle X,\nabla_Z Y\rangle$		$\nabla_{\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}} \left(\sum_{j=1}^{n} b_{j} \frac{\partial}{\partial x_{j}} \right) =$ $= \sum_{i,j} a_{i} \frac{\partial b_{j}}{\partial x_{i}} \frac{\partial}{\partial x_{j}} + \sum_{i,j,k} a_{i} b_{j} \Gamma_{ij}^{k} \frac{\partial}{\partial x_{k}},$ $\Gamma_{ij}^{k} = \frac{1}{2} \sum_{s} g^{ks} (g_{ik,j} + g_{jk,i} - g_{ij,k}),$ $g_{ab,c} = \frac{\delta}{\partial x_{c}} g_{ab}, (g^{ij}) = (g_{ij})^{-1}$
Covariant derivative along c	$rac{D}{\partial t}$	Linear map $\frac{D}{dt}: \mathfrak{X}_c(M) \to \mathfrak{X}_c(M)$ satisfying Leibniz rule and $\frac{D}{dt}X(t_0) = \nabla_{c'(t_0)}\widetilde{X}$ where $X \in \mathfrak{X}_c(M)$ and \widetilde{X} is a local extension of X .		
Geodesics		A curve $c(t)$ s.t. $\frac{D}{dt}c'(t) = 0$ along $c(t)$		$c_k^{\prime\prime} = -\sum_{i,j} c_i^\prime(t) c_j^\prime(t) \Gamma_{ij}^k(c(t))$
Exponential map	exp_p	$exp_p: T_pM \to M$ $exp_p: v \mapsto c_v(1)$ where $c_v(t)$ is geodesic s.t. $c_v'(0) = v \in T_pM$	$\begin{array}{c c} T_pM \\ \hline \\ p \in M \end{array}$	