Riemannian Geometry, Michaelmas 2013.

Typical problems

Smooth manifolds, tangent spaces, vector fields

- 1. Smooth manifolds:
 - given M, construct an atlas;
 - given M, prove that it is a manifold (use Implicit Function Theorem or construct an atlas).
- 2. Tangent spaces:
 - find T_pM for some $p \in M$;
 - express some $X \in T_pM$ through $\frac{\partial}{\partial x_i}$ in some chart;
 - find the curves $\gamma_1, \ldots, \gamma_n \in M$ s.t. $(\gamma'_1(0), \ldots, \gamma'_n(0))$ form a basis of T_pM ;
 - write $Df: T_p(M) \to T_{f(p)}N)$ for $f: M \to N$;
 - find dim(ker(Df)) or ker(Df).
- 3. Vector fields:
 - given $X = \sum f_i \frac{\partial}{\partial x_i}$, $Y = \sum g_j \frac{\partial}{\partial x_j}$ compute [X, Y];
 - show that some vector field in \mathbf{R}^n restricts to a vector field on some manifold $M \subset \mathbf{R}^n$.

Riemannian metric, Levi-Civita connection and parallel transport

- 1. Riemannian metric:
 - given M and the bilinear form g(v, w) show that g may be used to define a metric on M;
 - find the length L(c) for a curve $c \in M$;
 - for $N \subset \mathbf{R}^n$ find the induced mentric on N (in some chart);
 - given a map $f:(M,g)\to (N,h)$ check that it is an isometry;
 - same for a map $f:(M,g)\to (M,g)$;
 - for an isometry f find Df;
 - for a curve $c(t) \subset M$ find its arc-length parametrization.
- 2. Levi-Civita connection and Christoffel symbols:
 - find Γ_{ij}^k in some chart on (M,g);
 - find $\nabla_v Y$ given $v \in T_p M$, $Y \in \mathfrak{X}(M)$ on (M, g).
- 3. Parallel transport:
 - In (M, g), find a curve c(t), c(0) = p, c'(0) = v, $\frac{D}{\partial t}c'(t) = 0$ (i.e. find a parallel vector field on c(t));
 - find $\frac{D}{\partial t}X$ for $X = \sum a(t)\frac{\partial}{\partial x_i}|_{c(t)}$. When X is parallel?
 - find the parallel transport $P_c: T_{c(a)}M \to T_{c(b)}M$;

g is bilinear, positive definite, symmetric; smooth

$$L(c) = \int_{a}^{b} ||c'(t)|| dt, ||v||_{q} = \sqrt{g_{p}(v, v)}$$

$$\langle Tv, Tw \rangle_h = \langle v, w \rangle_q$$

$$\tilde{c}(t) = c \circ \varphi(t)$$
, where $\varphi^{-1} = L(c|_{[a,t]})$

$$\Gamma_{ij}^{s} = \frac{1}{2} \sum_{k} g^{sk} (g_{jk,i} + g_{ik,j} - g_{ij,k})$$

$$\nabla_{\sum_{i} a_{i} \frac{\partial}{\partial x_{i}}} \sum_{j=1}^{n} b_{j} \frac{\partial}{\partial x_{j}} = \sum_{i,j} a_{i} \frac{\partial b_{j}}{\partial x_{i}} \frac{\partial}{\partial x_{j}} + \sum_{i,j,k} a_{i} b_{j} \Gamma_{i,j}^{k} \frac{\partial}{\partial x_{k}}$$

$$\frac{D}{dt} \left(\sum a_i(t) \frac{\partial}{\partial x_i} \mid_{c(t)} \right) = \sum_i \left(a'_i \frac{\partial}{\partial x_i} + a_i \nabla_{c'(t)} \frac{\partial}{\partial x_i} \right)
\frac{D}{\partial t} X = 0 \iff a'_k + \sum_{i,j} a_i c'_j \Gamma^k_{ij} = 0 \qquad (k = 1, \dots, n)$$

Problem class 2