Riemannian Geometry IV, Homework 10 (Week 10)

10.1. (Remark 5.19)

Let (M, g) be a Riemannian manifold, $p \in M$, $v \in T_pM$.

- (a) Show that a curve $c(t) = \exp_p(tv)$ is a geodesic.
- (b) Show that every geodesic γ through p can be written as $\gamma(t) = \exp_p(tw)$ for appropriate $w \in T_pM$.

10.2. (Lemma 5.20)

Let (M,g) be a Riemannian manifold and $p \in M$. Let $\varepsilon > 0$ be small enough such that

$$\exp_p: B_{\varepsilon}(0_p) \to B_{\varepsilon}(p) \subset M$$

is a diffeomorphism. Let $\gamma:[0,1]\to B_{\varepsilon}(p)\setminus\{p\}$ be any curve.

Show that there exists a curve $v:[0,1]\to T_pM$, ||v(s)||=1 for all $s\in[0,1]$, and a non-negative function $r:[0,1]\to\mathbb{R}_{>0}$, such that

$$\gamma(s) = \exp_p(r(s)v(s)).$$

10.3. (Lemma 5.14) Use the exponential map to show that any vector field $X \in \mathfrak{X}_c(M)$ along a smooth curve $c(t): [a,b] \to M$ is a variational vector field of some variation F(s,t) (i.e., $X(t) = \frac{\partial F}{\partial s}(0,t)$). Show that if X(a) = X(b) = 0 then the variation F(s,t) can be chosen to be proper.

10.4. Geodesic normal coordinates

Let (M, g) be a Riemannian manifold and $p \in M$. Let $\varepsilon > 0$ such that

$$\exp_n: B_{\varepsilon}(0_n) \to B_{\varepsilon}(p) \subset M$$

is a diffeomorphism. Let v_1, \ldots, v_n be an orthonormal basis of T_pM . Consider a local coordinate chart of M given by $\varphi = (x_1, \ldots, x_n) : B_{\varepsilon}(p) \to V = \{w \in \mathbb{R}^n \mid ||w|| < \varepsilon\}$ via

$$\varphi^{-1}(x_1, \dots, x_n) = \exp_p(\sum_{i=1}^n x_i v_i).$$

The coordinate functions x_1, \ldots, x_n of φ are called *geodesic normal coordinates*.

(a) Let g_{ij} be the metric in terms of the above coordinate system φ . Show that at the point p

$$g_{ij}(p) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

(b) Let $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$ be an arbitrary vector, and $c(t) = \varphi^{-1}(tw)$. Explain why c(t) is a geodesic and deduce from this fact that

$$\sum_{i,j} w_i w_j \Gamma_{ij}^k(c(t)) = 0$$

for all $1 \le k \le n$.

(c) Derive from (b) that all Christoffel symbols Γ_{ij}^k of the chart φ vanish at the point p (by choosing appropriate vectors $w \in \mathbb{R}^n$).