Riemannian Geometry IV, Homework 6 (Week 6)

Due date for starred problems: Thursday, November 26.

6.1. Let X and Y be two vector fields on \mathbb{R}^3 defined by

$$\begin{split} X(x,y,z) &= z\frac{\partial}{\partial x} - 2z\frac{\partial}{\partial y} + (2y - x)\frac{\partial}{\partial z}, \\ Y(x,y,z) &= y\frac{\partial}{\partial x} - x\frac{\partial}{\partial y}, \end{split}$$

and let S^2 sit inside \mathbb{R}^3 as the sphere of radius 1 centered at the origin.

- (a) Compute the Lie bracket [X, Y].
- (b) Verify that the restrictions of the vector fields X and Y to S^2 are vector fields on S^2 (in other words, are everywhere tangent to S^2).
- (c) Check that the restriction of [X,Y] to S^2 is also a vector field on S^2 .

6.2. (\star) Isometry between the hyperboloid and unit ball models of the hyperbolic plane

Let $\mathbb{W}^2 = \{x \in \mathbb{R}^3 \mid q(x,x) = -1, x_3 > 0\}$ with $q(x,y) = x_1y_1 + x_2y_2 - x_3y_3$ be the hyperboloid model of the hyperbolic plane. Let the Poincaré unit ball model \mathbb{B}^2 of hyperbolic 2-space sit inside \mathbb{R}^3 as $\mathbb{B}^2 = \{x \in \mathbb{R}^3 \mid x_3 = 0, x_1^2 + x_2^2 < 1\}$.

We define a map $f: \mathbb{W}^2 \to \mathbb{B}^2$ by requiring that for each $p \in \mathbb{W}^2$ the points $f(p) \in \mathbb{B}^2$ and p are collinear with the point (0,0,-1) (i.e. f is a projection from this point to the plane $\{z=0\}$).

(a) Calculate explicitly the maps f(X,Y,Z) for $(X,Y,Z) \in \mathbb{W}^2$ and $f^{-1}(x,y,0)$ for $(x,y,0) \in \mathbb{B}^2$.

Hint: you will obtain

$$x = \frac{X}{Z+1}, \quad y = \frac{Y}{Z+1}.$$

and

$$f^{-1}(x,y) = \left(\frac{2x}{1 - x^2 - y^2}, \frac{2y}{1 - x^2 - y^2}, \frac{1 + x^2 + y^2}{1 - x^2 - y^2}\right).$$

(b) An almost global coordinate chart $\varphi: U \to V$ on \mathbb{W}^2 is given by

$$\varphi^{-1}(x_1, x_2) = (\cos(x_1)\sinh(x_2), \sin(x_1)\sinh(x_2), \cosh(x_2)),$$

where $0 < x_1 < 2\pi$ and $0 < x_2 < \infty$. Let $\psi = \varphi \circ f^{-1}$ be a coordinate chart on \mathbb{B}^2 with coordinate functions y_1, y_2 . Calculate ψ^{-1} explicitly.

(c) Explain why

$$Df(p)(\frac{\partial}{\partial x_i}) = \frac{\partial}{\partial y_i}$$

for for all $p \in U$ and i = 1, 2, where $\frac{\partial}{\partial x_i} \in T_p \mathbb{W}^2$ and $\frac{\partial}{\partial y_i} \in T_{f(p)} \mathbb{B}^2$.

(d) Show that

$$\langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle_p = \langle \frac{\partial}{\partial y_i}, \frac{\partial}{\partial y_j} \rangle_{f(p)}$$

for all $p \in U$, and $i, j \in \{1, 2\}$. Together with part (c), this demonstrates that f is an isometry.

Additional remark. To be precise, we need to choose two coordinate charts of the above type with $V_1 = (0, 2\pi) \times (0, \infty)$ and $V_2 = (-\pi, \pi) \times (0, \infty)$, and to consider also the linear map $Df(0,0,1): T_{(0,0,1)}\mathbb{W}^2 \to T_0\mathbb{B}^2$ to cover the whole hyperbolic plane and to fully prove that f is an isometry.

- **6.3.** Let \mathbb{H}^2 be the upper half-plane model of the hyperbolic 2-space.
 - (a) Let 0 < a < b and $c : [a, b] \to \mathbb{H}^2$, c(t) = ti. Calculate the arc-length reparametrization $\gamma : [0, \ln(b/a)] \to \mathbb{H}^2$.
 - (b) Let $c:[0,\pi]\to\mathbb{H}^2$, given by

$$c(t) = \frac{ai\cos t + \sin t}{-ai\sin t + \cos t},$$

for some a > 1. Calculate L(c).

6.4. We work in the upper half-plane model of the hyperbolic 2-space \mathbb{H}^2 . We will show that for $z_1, z_2 \in \mathbb{H}^2$ the distance function is given by the formula

$$\sinh(\frac{1}{2}d(z_1, z_2)) = \frac{|z_1 - z_2|}{2\sqrt{\text{Im}(z_1)\text{Im}(z_2)}}.$$

- (a) Let $z_1 = iy_1$ and $z_2 = iy_2$ for $y_1, y_2 \in \mathbb{R}$. Verify that the formula holds in this case (you may use the formula for the distance between two such points derived in class).
- (b) Let $A \in SL_2(\mathbb{R})$ and let $f_A(z)$ be the isometry of \mathbb{H}^2 considered in Exercise 5.4. Show that both sides of the formula are invariant under f_A (you may use the hint about $Im(f_A(z))$ given in Exercise 5.4).
- (c) Finally, given two points $z_1, z_2 \in \mathbb{H}^2$, find an $A \in SL_2(\mathbb{R})$ such that both $f_A(z_1)$ and $f_A(z_2)$ lie on the imaginary axis.
- (d) Using what you know about Möbius transformations of \mathbb{C} , explain how you would draw the shortest path connecting two points $z_1, z_2 \in \mathbb{H}^2$.