Riemannian Geometry IV, Homework 8 (Week 8)

Due date for starred problems: Thursday, December 10.

- **8.1.** Let $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ be the unit sphere inside 3-space, with the induced metric from the standard Euclidean metric on \mathbb{R}^3 .
 - (a) (\star) Let c be the curve on S^2 given by

$$c(t) = \left(\frac{1}{\sqrt{2}}, \frac{\sin t}{\sqrt{2}}, \frac{\cos t}{\sqrt{2}}\right),$$

and let $v \in T_{c(0)}S^2$ be given by

$$v = (0, 1, 0) \in T_{c(0)}S^2 \subset T_{c(0)}\mathbb{R}^3.$$

Find the unique $X \in \mathfrak{X}_c(S^2)$ that is parallel along c and X(0) = v.

(b) Let $\gamma_1, \gamma_2 : [0, \pi] \to S^2$ be two curves connecting the north and south poles N and S defined by

$$\gamma_1(t) = (0, \sin t, \cos t)$$

$$\gamma_2(t) = (\sin t, 0, \cos t)$$

Show that the isomorphisms of $T_N(S^2)$ and $T_S(S^2)$ given by parallel transports along γ_1 and γ_2 are different, i.e. find $u \in T_N(S^2)$ such that $P_{\gamma_1}(u) \neq P_{\gamma_2}(u)$.

8.2. Let $\mathbb{H}^2 = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$ be the upper-half plane with its usual hyperbolic metric. Let c be the curve in \mathbb{H}^2 given by c(t) = i + t for $t \in \mathbb{R}$. Identifying the tangent space to each point of \mathbb{H}^2 in the usual way with \mathbb{C} , find the parallel vector field $X(t) \in \mathbb{C} = T_{c(t)}\mathbb{H}^2$ along c, which is determined by its value at t = 0:

$$X(0) = 1 \in \mathbb{C} = T_i \mathbb{H}^2.$$

8.3. Let (M,g) be a Riemannian manifold and $c:[a,b]\to M$ be a smooth curve. Let $\frac{D}{dt}$ denote the corresponding covariant derivative along the curve c. Let X,Y be any two parallel vector fields X,Y along c. Show that

$$\frac{d}{dt}\langle X, Y \rangle \equiv 0,$$

i.e., the parallel transport $P_c: T_{c(a)}M \to T_{c(b)}M$ is a linear isometry.

- (a) (\star) Prove this statement in the particular case when the vector fields X, Y along c have global extensions $\tilde{X}, \tilde{Y}: M \to TM$.
- (b) Do the same computation for a general case writing X(t), Y(t) in local coordinates.
- **8.4.** Given a curve $c:[a,b]\to\mathbb{R}^3$, c(t)=(f(t),0,g(t)) without self-intersections and with f(t)>0 for all $t\in[a,b]$, let $M\subset\mathbb{R}^3$ denote the surface of revolution obtained by rotating this curve around the z-axis. Let ∇ denote the Levi-Civita connection of M. An almost global coordinate chart is given by $\varphi:U\to V:=(a,b)\times(0,2\pi)$,

$$\varphi^{-1}(x_1, x_2) = (f(x_1)\cos x_2, f(x_1)\sin x_2, g(x_1)).$$

- (a) Calculate the Christoffel symbols of this coordinate chart and express $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}$ in terms of the basis $\frac{\partial}{\partial x_k}$.
- (b) Let $\gamma_1(t) = \varphi^{-1}(x_1+t,x_2)$. Calculate $\frac{D}{dt}\gamma_1',$

where $\frac{D}{dt}$ denotes the covariant derivative along γ_1 . Show that this vector field along γ_1 vanishes if and only if the generating curve c of M is parametrized proportional to arc-length. Note that γ_1 is obtained by rotation of c by a fixed angle. Derive from these facts that meridians of a surface of revolution are geodesics if they are parametrized proportional to arc length.

(c) Let
$$\gamma_2(t) = \varphi^{-1}(x_1, x_2 + t)$$
. Calculate
$$\frac{D}{dt}\gamma_2',$$

where $\frac{D}{dt}$ denotes the covariant derivative along γ_2 . Show that this vector field along γ_2 vanishes if and only if $f'(x_1) = 0$. Explain that this implies that parallels of a surface of revolution are geodesics if they have locally maximal or minimal radius.