Combinatorial Auslander-Reiten quivers and their frieze patterns

Ricardo Canesin

Université Paris Cité

May 13, 2025

- Let Δ be a Dynkin diagram of type ADE.
- Bédard (1999) studied the relation between the AR quiver of a Dynkin quiver of type ∆ and certain reduced words for the longest element w₀ ∈ W.
- Oh and Suh (2019) defined the combinatorial AR quiver Υ_i associated with any reduced word *i* for w₀. It can be naturally extended to a repetition quiver Ŷ_i.

In type A_5 :

In type D_5 :

- Each vertex x in $\widehat{\Upsilon}_i$ has a translation τx .
- The set $V_i(x)$ of "close neighbors" between x and τx forms the analog of a mesh in an AR quiver.

Definition

An additive frieze on $\widehat{\Upsilon}_{\boldsymbol{i}}$ is a function $f:(\widehat{\Upsilon}_{\boldsymbol{i}})_0 \to \mathbb{Z}$ satisfying

$$f(\tau x) + f(x) = \sum_{y \in V_i(x)} f(y)$$

for all $x \in (\widehat{\Upsilon}_i)_0$.

For the previous example in type A_5 , we have the following additive frieze:

There is a coordinate map from the set of vertices of $\widehat{\Upsilon}_i$ to the root system of type Δ .

Theorem

The coordinate map satisfies the mesh relations. It gives rise to all additive friezes on $\widehat{\Upsilon}_i.$

This was known only for twisted AR quivers.

Corollary

All additive friezes are periodic and have similar symmetries as in the classical case.

• Let Π be the derived preprojective algebra of type $\Delta.$

• We define a certain additive subcategory $\mathcal{R}(i)$ of $\mathrm{pvd}(\Pi)$.

Theorem

The combinatorial repetition quiver $\widehat{\Upsilon}_i$ can be obtained from the Gabriel quiver of $\mathcal{R}(i)$ after removing certain arrows.

Theorem

The mesh relations satisfied by the coordinate map are categorified by a certain sequence of distinguished triangles in $pvd(\Pi)$ involving objects in $\mathcal{R}(i)$.

For the previous example in type A_5, we can depict the "heart" of $\mathcal{R}(\boldsymbol{i})$ as follows:

