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Cluster categorier as the orbit categories
• Let A be a finite-dimensional k-algebra with gldimA < ∞ and m ≥ 2 an integer.
• In the hereditary case and m = 2, Buan-Marsh-Reineke-Reiten-Todorov (2005) defined

the cluster category as the orbit category
C2(A) := Db(modA)/τ−1 ◦ [1],

where τ is the AR-translation functor. Keller (2005) shown that C2(A) does carry a
canonical triangulated structure which is obtained by using dg enhancements.

• In general, perA = Db(A) admits a Serre functor S := −
L⊗A DA. Set

Σm := S ◦ [−m], which is an autoequivalence of perA. The orbit category perA/Σm

has a triangulated hull (Keller)
Cm(A) := ⟨A⟩B/ perB,

where B is the dg algebra A ⊕ DA[−m− 1]. Moreover, the m-cluster category
Cm(A) of A coincides with perA/Σm when A is hereditary.

Construction of dg orbit categories
Let A be a dg category and F ∈ repdg(A,A) a dg bimodule. The left lax quotient A/llF

N

of A by F is the dg category whose
• objects are the same as the objects of A, and
• morphisms are given by A/llF

N(X, Y) = ⊕p∈NA(X, FpY).
The canonical dg functor QN : A → A/llF

N acts on
• objects: it sends X ∈ obj(A) to X ∈ obj(A/llF

N), and
• morphisms: it sends f : X → Y to f ∈ A(X, Y) ⊆ ⊕p∈NA(X, FpY).

The canonical morphism of dg functors q : QNF → QN acts on the objects of A as
qX := idFX ∈ A(FX, FX) ⊆ ⊕p∈NA(FX, Fp+1X).

Definition
The dg orbit category A/FZ is defined to be the dg localization

(A/llF
N)[q−1]

of A/llF
N with respect to the morphisms qX : QNFX → QNX for any X ∈ obj(A).

We use the Z-equivariant category Z- Eq(A, F,B) to describe the universal property of dg
orbit category. It consists of Z-equivariant functors from (A, F) to (B, idB) i.e. (G,γ), where
G ∈ repdg(A,B) and γ : GF → G s.t. γX is an isomorphism in H0(B), ∀X ∈ obj(A). The
pretriangulated hull of the dg orbit category satisfies the following universal property.

Theorem
Let B be a pretriangulated dg category. Then A → pretr(A/FZ) induces an isomorphism

repdg(pretr(A/FZ),B) ∼−→ Z- Eq(A, F,B) (1)

in Hqe.
Thus, we can construct the triangulated orbit category of a triangulated category in a canon-
ical way.

Definition
Let T be a triangulated category endowed with a dg enhancement H0(A) ∼−→ T and
F ∈ repdg(A,A) be a dg bimodule. If the induced functor H0(F) : H0(A) → H0(A) is an
equivalence, then the triangulated orbit category of T wrt A is defined as

H0(pretr(A/FZ)). (2)

Moreover, we have that taking dg orbit commutes with taking dg quotient.

Proposition
Suppose N ⊆ A is a full dg subcategory such that H0(N ) is stable under H0(F), so that
F induces dg bimodules FN ∈ repdg(N ,N ) and FA/N ∈ repdg(A/N ,A/N ). We have a
canonical isomorphism in Hqe

pretr((A/N )/FZA/N ) ≃ pretr(A/FZ)/ pretr(N/FZN ) (3)

and a short exact sequence of triangulated categories

0 → (N/FZN )tr → (A/FZ)tr → ((A/N )/FZA/N )tr → 0, (4)

where (−)tr denotes the functor H0 ◦ pretr.

Cluster categories versus singularity categories
Let A be a dg algebra and X ∈ D(Ae) an invertible dg bimodule with inverse Y, that is,
there are isomorphisms

X
L⊗A Y ≃ A and Y

L⊗A X ≃ A

in D(Ae). Write X̂ for a cofibrant resolution of X[X− 1], where [X− 1] indicates the shift
by bidegree (−1, 1). We let

T := TA(X̂) = ⊕p≥0X̂
⊗p

A

be the differential bigraded tensor algebra of X̂ over A and
E := A ⊕ Y[−X]

the differential bigraded trivial extension algebra of Y[−X] over A. We define the enlarged
cluster category of A with respect to X as the Verdier quotient

CZ(T,A) := perZ(T)/ pvdZ(T,A); (5)
and the shrunk singularity category of A as the Verdier quotient

sgZ(E,A) := pvdZ(E,A)/ perZ(E). (6)

Theorem
The adjoint pair

perZ(T) pvdZ(E,A)
RHomZ

T (A,?)

?
L⊗EA

induces the following commutative diagram

pvdZ(T,A) perZ(T) CZ(T,A)

perA,

perZ(E) pvdZ(E,A) sgZ(E,A)

≀ ≀ RHomZ
T (A,?) ≀

Ψ,∼

[1]◦Φ,∼

(7)

where we have [X] ◦ [1] ◦ Φ ≃ [1] ◦ Φ ◦ (?
L⊗A Y[1]), [X] ◦ Ψ ≃ Ψ ◦ (?

L⊗A Y[1]) and
all the other functors commute with [X].

Application: N-reductions as taking orbits
We consider the case when A is a smooth, proper and connective dg algebra, X = A∨ and
Y = DA, where A∨ is a cofibrant replacement of the dg bimodule RHomAe(A,Ae). Then
T = ΠXA is the X-Calabi-Yau completion, which is the dbg algebra

ΠXA = A ⊕ Θ ⊕
Θ ⊗A Θ

 ⊕ · · ·
for Θ = A∨[X− 1], and the trivial extension EX = A ⊕ DA[−X] of A respectively. More-
over, the enlarged cluster category reduces to the ∞-cluster category

CZ(ΠXA) := perZ(ΠXA)/ pvdZ(ΠXA),

and the shrunk singularity category becomes
sgZ(EX) := pvdZ(EX)/ perZ(EX).

We have a canonical isomorphism of vector spaces
⊕(a,b)∈Z2,a+bN=p(ΠXA)ab → (ΠNA)p.

If we denote the dg algebra EN := A⊕DA[−N], then, on the level of differential (bi)graded
algebras, we have the canonical projections

πN : ΠXA → ΠNA and πN : EX → EN (8)
collapsing the double degree (a, b) ∈ Z ⊕ ZX into a+ bN ∈ Z. They induce functors

πN : perZ(ΠXA) → per(ΠNA) and πN : pvdZ(EX) → pvd(EN),

and restrict to the responding perfected valued subcategories. As a consequence, we have
the following commutative diagram between short exact sequences of triangulated categories:

pvd(ΠNA) per(ΠNA) C(ΠNA)

pvdZ(ΠXA) perZ(ΠXA) CZ(ΠXA)

//[X−N] //[X−N] //[X−N]

per(EN) pvd(EN) sg(EN) CN−1(A).

perZ(EX) pvdZ(EX) sgZ(EX) perA

//[X−N] //[X−N] //[X−N] /τ−1 ◦ [2−N]

∼ ∼ ∼ ∼
∼

∼ ∼ ∼ ∼
∼
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