

Dg enhanced orbit categories and applications

Li Fan¹, Bernhard Keller², Yu Qiu^{1,3}

¹Yau Mathematical Sciences Center and Department of Mathematical Sciences, Tsinghua University, China. ²Université Paris Cité and Sorbonne Université. France.

³Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), China.

Cluster categorier as the orbit categories

- Let A be a finite-dimensional k-algebra with gldim $A < \infty$ and $m \ge 2$ an integer.
- In the hereditary case and m = 2, Buan-Marsh-Reineke-Reiten-Todorov (2005) defined the cluster category as the orbit category

 $\mathcal{C}_2(A) \coloneqq \mathcal{D}^{\mathsf{b}}(\operatorname{mod} A) / \tau^{-1} \circ [1],$

where τ is the AR-translation functor. Keller (2005) shown that $\mathcal{C}_2(A)$ does carry a canonical triangulated structure which is obtained by using dg enhancements.

• In general, per $A = \mathcal{D}^{b}(A)$ admits a Serre functor $\mathbb{S} \coloneqq - \overset{L}{\otimes}_{A} DA$. Set $\Sigma_m \coloneqq \mathbb{S} \circ [-m]$, which is an autoequivalence of per A. The orbit category per A/Σ_m has a triangulated hull (Keller)

Cluster categories versus singularity categories

Let A be a dg algebra and $X \in \mathcal{D}(A^e)$ an invertible dg bimodule with inverse Y, that is, there are isomorphisms

 $X \overset{L}{\otimes}_A Y \simeq A$ and $Y \overset{L}{\otimes}_A X \simeq A$

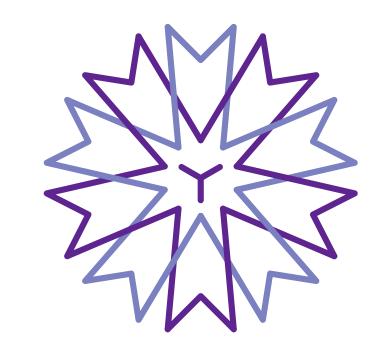
in $\mathcal{D}(A^e)$. Write \widehat{X} for a cofibrant resolution of X[X-1], where [X-1] indicates the shift by bidegree (-1, 1). We let

$$\mathsf{T}\coloneqq\mathsf{T}_{\mathsf{A}}(\widehat{\mathsf{X}})=\oplus_{\mathfrak{p}\geq\mathfrak{0}}\widehat{\mathsf{X}}^{\otimes^{\mathfrak{p}}_{\mathsf{A}}}$$

be the differential bigraded tensor algebra of X over A and

 $\mathsf{E} \coloneqq \mathsf{A} \oplus \mathsf{Y}[-\mathbb{X}]$

the differential bigraded trivial extension algebra of Y[-X] over A. We define the enlarged



(5)

(6)

 $\mathcal{C}_{\mathfrak{m}}(\mathsf{A}) \coloneqq \langle \mathsf{A} \rangle_{\mathsf{B}} / \operatorname{per} \mathsf{B},$

where B is the dg algebra $A \oplus DA[-m-1]$. Moreover, the m-cluster category $\mathcal{C}_{\mathfrak{m}}(A)$ of A coincides with $\operatorname{per} A/\Sigma_{\mathfrak{m}}$ when A is hereditary.

Construction of dg orbit categories

- Let \mathcal{A} be a dg category and $F \in \operatorname{rep}_{dq}(\mathcal{A}, \mathcal{A})$ a dg bimodule. The *left lax quotient* $\mathcal{A}/_{\mathfrak{ll}}F^{\mathbb{N}}$ of \mathcal{A} by F is the dg category whose
- objects are the same as the objects of \mathcal{A} , and
- morphisms are given by $\mathcal{A}/_{\mathfrak{ll}}F^{\mathbb{N}}(X,Y) = \bigoplus_{p \in \mathbb{N}}\mathcal{A}(X,F^{p}Y)$.
- The canonical dg functor $Q_{\mathbb{N}}: \mathcal{A} \to \mathcal{A}/_{\mathfrak{ll}}\mathsf{F}^{\mathbb{N}}$ acts on
- objects: it sends $X \in obj(\mathcal{A})$ to $X \in obj(\mathcal{A}/_{ll}F^{\mathbb{N}})$, and
- morphisms: it sends $f : X \to Y$ to $f \in \mathcal{A}(X, Y) \subseteq \bigoplus_{p \in \mathbb{N}} \mathcal{A}(X, F^pY)$.

The canonical morphism of dg functors $q:Q_{\mathbb{N}}\mathsf{F} o Q_{\mathbb{N}}$ acts on the objects of $\mathcal A$ as

 $qX \coloneqq id_{FX} \in \mathcal{A}(FX, FX) \subseteq \bigoplus_{p \in \mathbb{N}} \mathcal{A}(FX, F^{p+1}X).$

Definition

The *dg* orbit category $\mathcal{A}/F^{\mathbb{Z}}$ is defined to be the dg localization

$(\mathcal{A}/_{\mathrm{ll}}\mathsf{F}^{\mathbb{N}})[\mathsf{q}^{-1}]$

of $\mathcal{A}/_{\mathfrak{U}}F^{\mathbb{N}}$ with respect to the morphisms $qX: Q_{\mathbb{N}}FX \to Q_{\mathbb{N}}X$ for any $X \in obj(\mathcal{A})$. We use the \mathbb{Z} -equivariant category \mathbb{Z} - $Eq(\mathcal{A}, F, \mathcal{B})$ to describe the universal property of dg orbit category. It consists of \mathbb{Z} -equivariant functors from (\mathcal{A}, F) to $(\mathcal{B}, id_{\mathcal{B}})$ i.e. (G, γ) , where $G \in \operatorname{rep}_{dg}(\mathcal{A}, \mathcal{B})$ and $\gamma : GF \to G$ s.t. γX is an isomorphism in $H^0(\mathcal{B}), \forall X \in \operatorname{obj}(\mathcal{A})$. The pretriangulated hull of the dg orbit category satisfies the following universal property.

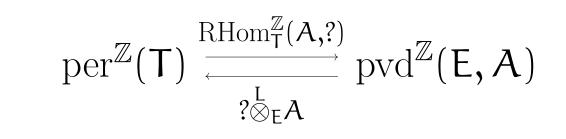
cluster category of A with respect to X as the Verdier quotient

 $\mathcal{C}^{\mathbb{Z}}(\mathsf{T},\mathsf{A}) \coloneqq \operatorname{per}^{\mathbb{Z}}(\mathsf{T}) / \operatorname{pvd}^{\mathbb{Z}}(\mathsf{T},\mathsf{A});$

and the *shrunk singularity category* of A as the Verdier quotient $\operatorname{sg}^{\mathbb{Z}}(\mathsf{E},\mathsf{A}) \coloneqq \operatorname{pvd}^{\mathbb{Z}}(\mathsf{E},\mathsf{A}) / \operatorname{per}^{\mathbb{Z}}(\mathsf{E}).$

Theorem

The adjoint pair



induces the following commutative diagram

$$\operatorname{pvd}^{\mathbb{Z}}(\mathsf{T},\mathsf{A}) \longrightarrow \operatorname{per}^{\mathbb{Z}}(\mathsf{T}) \longrightarrow \mathcal{C}^{\mathbb{Z}}(\mathsf{T},\mathsf{A}) \xrightarrow{[1]\circ\Phi,\sim} \mathbb{Q} \xrightarrow{\mathbb{Q}} \xrightarrow{\mathbb{Q}} \xrightarrow{\mathbb{Q}} \mathbb{Q} \xrightarrow{\mathbb{Q}} \xrightarrow{\mathbb{Q}} \mathbb{Q} \xrightarrow{\mathbb{Q}} \xrightarrow{\mathbb$$

where we have $[X] \circ [1] \circ \Phi \simeq [1] \circ \Phi \circ (? \overset{L}{\otimes}_{A} Y[1]), [X] \circ \Psi \simeq \Psi \circ (? \overset{L}{\otimes}_{A} Y[1])$ and all the other functors commute with [X].

Application: N-reductions as taking orbits

Theorem

Let \mathcal{B} be a pretriangulated dg category. Then $\mathcal{A} \to \operatorname{pretr}(\mathcal{A}/F^{\mathbb{Z}})$ induces an isomorphism

$$\operatorname{rep}_{dg}(\operatorname{pretr}(\mathcal{A}/\mathsf{F}^{\mathbb{Z}}),\mathcal{B}) \xrightarrow{\sim} \mathbb{Z}\operatorname{-}\operatorname{Eq}(\mathcal{A},\mathsf{F},\mathcal{B})$$
(1)

in Hqe.

Thus, we can construct the triangulated orbit category of a triangulated category in a canonical way.

Definition

Let \mathcal{T} be a triangulated category endowed with a dg enhancement $\mathrm{H}^{0}(\mathcal{A}) \xrightarrow{\sim} \mathcal{T}$ and $F \in \operatorname{rep}_{dg}(\mathcal{A}, \mathcal{A})$ be a dg bimodule. If the induced functor $H^0(F) : H^0(\mathcal{A}) \to H^0(\mathcal{A})$ is an equivalence, then the *triangulated orbit category* of \mathcal{T} wrt \mathcal{A} is defined as

$$\mathcal{H}^{0}(\operatorname{pretr}(\mathcal{A}/\mathsf{F}^{\mathbb{Z}})). \tag{2}$$

Moreover, we have that taking dg orbit commutes with taking dg quotient.

Proposition

Suppose $\mathcal{N} \subseteq \mathcal{A}$ is a full dg subcategory such that $H^0(\mathcal{N})$ is stable under $H^0(F)$, so that F induces dg bimodules $F_{\mathcal{N}} \in \operatorname{rep}_{dq}(\mathcal{N}, \mathcal{N})$ and $F_{\mathcal{A}/\mathcal{N}} \in \operatorname{rep}_{dq}(\mathcal{A}/\mathcal{N}, \mathcal{A}/\mathcal{N})$. We have a canonical isomorphism in Hqe

$$\operatorname{pretr}((\mathcal{A}/\mathcal{N})/\mathsf{F}_{\mathcal{A}/\mathcal{N}}^{\mathbb{Z}}) \simeq \operatorname{pretr}(\mathcal{A}/\mathsf{F}^{\mathbb{Z}})/\operatorname{pretr}(\mathcal{N}/\mathsf{F}_{\mathcal{N}}^{\mathbb{Z}}) \tag{3}$$

We consider the case when A is a smooth, proper and connective dg algebra, $X = A^{\vee}$ and Y = DA, where A^{\vee} is a cofibrant replacement of the dg bimodule $\operatorname{RHom}_{A^e}(A, A^e)$. Then $T = \Pi_X A$ is the X-Calabi-Yau completion, which is the dbg algebra

 $\Pi_{\mathbb{X}} A = A \oplus \Theta \oplus (\Theta \otimes_A \Theta) \oplus \cdots$

for $\Theta = A^{\vee}[X - 1]$, and the trivial extension $E_X = A \oplus DA[-X]$ of A respectively. Moreover, the enlarged cluster category reduces to the ∞ -cluster category

 $\mathcal{C}^{\mathbb{Z}}(\Pi_{\mathbb{X}} A) \coloneqq \operatorname{per}^{\mathbb{Z}}(\Pi_{\mathbb{X}} A) / \operatorname{pvd}^{\mathbb{Z}}(\Pi_{\mathbb{X}} A),$

and the shrunk singularity category becomes

 $\operatorname{sg}^{\mathbb{Z}}(\mathsf{E}_{\mathbb{X}}) \coloneqq \operatorname{pvd}^{\mathbb{Z}}(\mathsf{E}_{\mathbb{X}}) / \operatorname{per}^{\mathbb{Z}}(\mathsf{E}_{\mathbb{X}}).$

We have a canonical isomorphism of vector spaces

$$\oplus_{(a,b)\in\mathbb{Z}^2,a+bN=p}(\Pi_{\mathbb{X}}A)^a_b \to (\Pi_NA)^p.$$

If we denote the dg algebra $E_N := A \oplus DA[-N]$, then, on the level of differential (bi)graded algebras, we have the canonical projections

$$\pi_{\mathsf{N}} \colon \Pi_{\mathbb{X}} \mathsf{A} \to \Pi_{\mathsf{N}} \mathsf{A} \text{ and } \pi_{\mathsf{N}} \colon \mathsf{E}_{\mathbb{X}} \to \mathsf{E}_{\mathsf{N}}$$
(8)

collapsing the double degree $(a, b) \in \mathbb{Z} \oplus \mathbb{Z} \mathbb{X}$ into $a + bN \in \mathbb{Z}$. They induce functors

$$\pi_{\mathsf{N}} \colon \operatorname{per}^{\mathbb{Z}}(\Pi_{\mathbb{X}} \mathsf{A}) \to \operatorname{per}(\Pi_{\mathsf{N}} \mathsf{A}) \text{ and } \pi_{\mathsf{N}} \colon \operatorname{pvd}^{\mathbb{Z}}(\mathsf{E}_{\mathbb{X}}) \to \operatorname{pvd}(\mathsf{E}_{\mathsf{N}}),$$

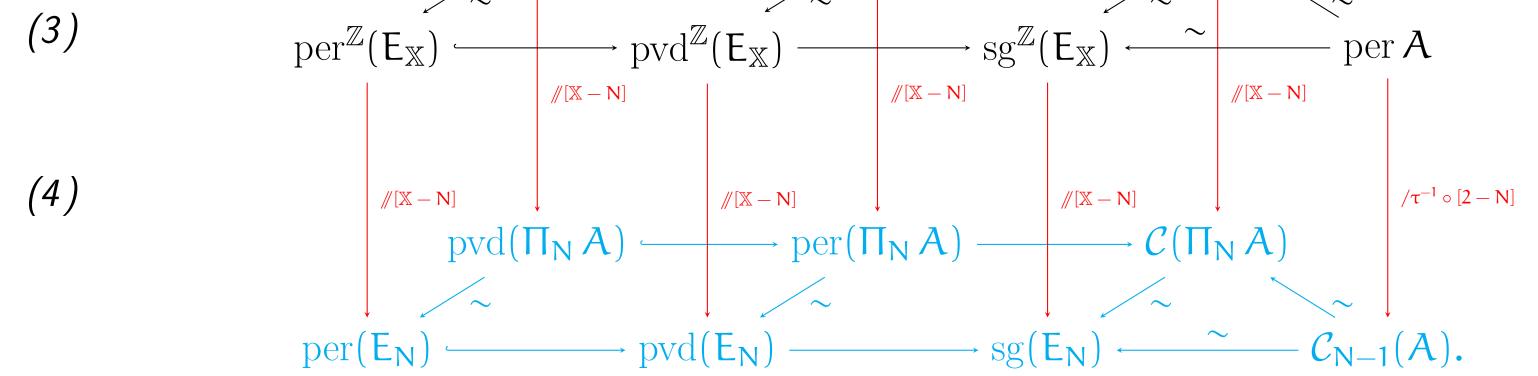
and restrict to the responding perfected valued subcategories. As a consequence, we have the following commutative diagram between short exact sequences of triangulated categories:

 $\operatorname{pretr}((\mathcal{A}/\mathcal{N})/\mathsf{H}_{\mathcal{A}/\mathcal{N}}^{\mathbb{Z}}) \simeq \operatorname{pretr}(\mathcal{A}/\mathsf{H}^{\mathbb{Z}})/\operatorname{pretr}(\mathcal{N}/\mathsf{H}_{\mathcal{N}}^{\mathbb{Z}})$

and a short exact sequence of triangulated categories

 $0 \to (\mathcal{N}/\mathsf{F}^{\mathbb{Z}}_{\mathcal{N}})^{\mathrm{tr}} \to (\mathcal{A}/\mathsf{F}^{\mathbb{Z}})^{\mathrm{tr}} \to ((\mathcal{A}/\mathcal{N})/\mathsf{F}^{\mathbb{Z}}_{\mathcal{A}/\mathcal{N}})^{\mathrm{tr}} \to 0,$

where $(-)^{tr}$ denotes the functor $H^0 \circ pretr$.



Main References

- [1] Dieter Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), 339–389.
- [2] Akishi Ikeda and Yu Qiu, q-Stability conditions on Calabi–Yau-X categories, Compos. Math. 159 (2023), 1347–1386. arXiv:1807.00469.
- [3] Akishi Ikeda and Yu Qiu, q-Stability conditions via q-quadratic differentials for Calabi–Yau-X categories, Memoirs of Amer. Math. Soc., to appear. arXiv:1812.00010.
- [4] Bernhard Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551–581. arXiv:math/0503240.
- [5] Bernhard Keller, Corrections to "On triangulated orbit categories", available at http://people.math.jussieu.fr/ keller/publ/corrTriaOrbit.pdf.

Frieze patterns in algebra, combinatorics and geometry, CIRM, May 2025, Marsailles, France

fan-l17@tsinghua.org.cn