Overview

Complexified Grothendieck rings of certain monoidal subcategories of representations of quantum affine algebras, their Borel subalgebras, and shifted quantum affine algebras admit three notable cluster structures introduced by Hernandez-Leclerc [HL10], [HL16] and Geiss-Hernandez-Leclerc [GHL24]. Schemes of bands provide a geometric realisation of these cluster structures. For those interested in connections between bands and representation theory, we recommend to have a look at [FL25, Section 8].

We fix some notation:

- K: algebraically closed field, char(K) = 0.
- G : simple, simply connected, simply laced algebraic group over K.
- T : maximal torus of T.
- B, B^- : Borel subgroups of G such that $B \cap B^- = T.$
- U, U^- : unipotent radicals of B and B^- .
- W: Weyl group of G with respect to T.
- w_0 : longest element of W.

- c : a Coxeter element of W.
- $\widetilde{c} := w_0 c^{-1} w_0$.
- \overline{c} : a representative of c in the normaliser of T.
- $U(c^{-1}) := U \cap (cU^{-}c^{-1}).$
- I : set of vertices of the Dynkin diagram of G.
- $\varpi_i \ (i \in I)$: fundamental weights.
- $\Delta_{v\varpi_i, w\varpi_i}$ $(v, w \in W, i \in I)$: Fomin-Zelevinsky generalised minors; certain regular functions on

Schemes of bands and their regular functions

Definition: A (G, c)-band over K is a sequence $b = (g(s))_{s \in \mathbb{Z}}$ of elements of G such that for any $s \in \mathbb{Z}$ we have $g(s)g(s+1)^{-1} \in U(c^{-1})\overline{c}$.

Theorem: The (G, c)-bands over K are the K-rational points of an infinite dimensional affine scheme B(G,c). The ring R(G,c) of regular functions on B(G,c) is a unique factorisation domain.

The scheme B(G, c) represents the functor $K - Alg \longrightarrow Set$ obtained by replacing the field K with a general K-algebra R in the definition of (G, c)-bands over K.

The scheme B(G, c) admits some distinguished regular functions that we will now describe. Let $s \in \mathbb{Z}$ and $k \in \mathbb{Z}_{>0}$. Consider the morphisms

$$\pi_{\mathbf{s}} : B(G,c) \longrightarrow G \qquad \tau_{\mathbf{s},\mathbf{k}} : B(G,c) \longrightarrow G$$
$$b = ((g(t))_{t \in \mathbb{Z}} \longmapsto g(\mathbf{s}) \qquad b = ((g(t))_{t \in \mathbb{Z}} \longmapsto g(\mathbf{s})g(\mathbf{s}))$$

and define

$$\Delta_{v\varpi_i,w\varpi_i}^{(s)} := \pi_s^{*}(\Delta_{v\varpi_i,w\varpi_i}), \quad \theta_{i,k}^{(s)} := \tau_{s,k}^{*}(\Delta_{\varpi_i,\varpi_i}), \quad (i \in I, v)$$

Proposition: The pullback homomorphisms π_s^* : $K[G] \longrightarrow R(G, c)$ are injective. Moreover:

. The K-algebra R(G, c) is generated by the elements

$$\Delta_{v\varpi_i, w\varpi_i}^{(s)} \ (i \in I, \, s \in \mathbb{Z}, \, v, w \in W).$$

2. The algebra R(G,c) is a polynomial ring in the elements $\theta_{i,1}^{(s)}$ (a coefficients in $\pi_0^*(K[G])$.

Definition: The group G acts on B(G, c) by the formula $(g(s))_{s \in \mathbb{Z}}$

An explicit example: $(SL(n), c_{st})$ -band

Assume that G = SL(n) and $c = c_{st} := s_1 \cdots s_{n-1}$. Then

$$U(c_{st}^{-1})\overline{c_{st}} = \left\{ \begin{pmatrix} a_1 \ a_2 \ \cdots \ a_{n-1} \ (-1)^{n-1} \\ 1 \ 0 \ \cdots \ 0 \ 0 \\ 0 \ 1 \ \cdots \ 0 \ 0 \\ \vdots \ \vdots \ \cdots \ \vdots \ \vdots \\ 0 \ 0 \ \cdots \ 1 \ 0 \end{pmatrix} : a_1, \dots, a_{n-1} \in K \right\}.$$

Cluster structures on schemes of bands

Luca Francone

Based on a Joint work with Bernard Leclerc : [FL25]

Thus, two elements $g, h \in SL(n)$ satisfy $gh^{-1} \in U(c_{st}^{-1})\overline{c_{st}}$ if and only if the last n-1rows of g are equal to the first n-1 rows of h. Hence, the set of $(SL(n), c_{st})$ -bands over K can be identified with the set of $\infty \times n$ matrices $B = (b_{ij})_{i \in \mathbb{Z}, 1 < j < n}, \qquad (b_{ij} \in K)$

such that the sub-matrices

 $B(s) := (b_{ij})_{s \le i \le s+n-1, 1 \le j \le n}$ $(s \in \mathbb{Z})$

have determinant equal to one. This identification assigns to a matrix B the band $(B(s))_{s\in\mathbb{Z}}$. For instance, the matrix

$$B = \begin{pmatrix} \vdots & \vdots \\ 3 & 4 \\ 2 & 3 \\ 1 & 2 \\ 2 & 5 \\ 3 & 8 \\ \vdots & \vdots \end{pmatrix}, \qquad \left(B(0) = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \right)$$

corresponds to the $(SL(2), c_{st})$ -band whose components are:

$$g(-s) := \begin{pmatrix} s+2 \ s+3\\ s+1 \ s+2 \end{pmatrix}, \ (s \ge 0), \quad g(s) := \begin{pmatrix} s & 3s-1\\ s+1 \ 3s+2 \end{pmatrix}, \ (s > 0).$$

In this identification:

- The function $\Delta_{v\varpi_i,w\varpi_i}^{(s)}$ corresponds to the minor of B(s) taken along rows $v \cdot \{1, \ldots, i\}$ and columns $w \cdot \{1, \ldots, i\}$.
- The function $\theta_{ik}^{(s)}$ sends a matrix B to the determinant of the maximal square submatrix of B taken along rows

 $([s, s+i-1] \sqcup [s+i+k, s+n+k-1]) \cap \mathbb{Z}.$

• The action of SL(n) on $B(SL(n), c_{st})$ is given by matrix multiplication.

The three cluster structures

To the Coxeter element $c = s_{i_1} \cdots s_{i_n}$ $(n = \operatorname{rk}(G))$ we associate an orientation Q of the Dynkin diagram of G by requiring that i_1 is a source of Q, i_2 is a source of $s_{i_1}(Q)$, and so on. Let KQ be the path algebra of Q and $D^{b}(KQ)$ be the bounded derived category of KQ - mod. We consider the following three quivers:

- Λ : the product of a sink-source orientation of a Dynkin diagram of type A_{∞} with a sink source orientation of the Dynkin diagram of G.
- 2. \mathcal{G}_{DQ} : the Auslander-Reiten quiver of $D^{b}(KQ)$ with additional arrows corresponding to AR-translation.

The quiver \mathcal{G}_{DQ} contains a copy of the Auslander-Reiten quiver \mathcal{G}_Q of KQ - mod. The vertices of this copy are coloured in red in the example on the right.

3. Γ_c : the quiver obtained from \mathcal{G}_{DQ} by replacing every vertex \boldsymbol{v} of \mathcal{G}_Q by an arrow $v_1 \longrightarrow v_2$ (between two new vertices v_1, v_2), so that the oriented 3-cycles of \mathcal{G}_{DQ} incident at v and modified by this procedure become oriented 4-cycles.

Definition: Let \mathcal{A} be the cluster algebra of the quiver Λ , \mathcal{B} be the **upper** cluster algebra of the quiver \mathcal{G}_{DQ} , and \mathcal{C} be the cluster algebra of the quiver Γ_c .

Theorem: There is an algebra isomorphism $K \otimes \mathcal{A} \longrightarrow R(G, c)^G$ sending the initial cluster variables to elements of the form

$$\mathcal{P}_{i,k}^{(s)}, \qquad (s \in \mathbb{Z}, \, i \in I)$$

Theorem: There is an algebra isomorphism $K \otimes \mathcal{B} \longrightarrow R(G, c)^U$ sending the initial cluster variables to elements of the form

$$\Delta^{(s)}_{\overline{\alpha}; \overline{\alpha}; \overline{\alpha}}, \qquad (s \in \mathbb{Z})$$

$$(1) + k)^{-1}$$

 $v, w \in W$). (2)

$$i \in I, s \in \mathbb{Z}$$
) with

$$g \cdot g := (g(s)g)_{s \in \mathbb{Z}}.$$

 $k \in \mathbb{Z}_{>0}$).

 $L, i \in I$).

Theorem: There is an algebra isomorphism $K \otimes \mathcal{C} \longrightarrow R(G, c)$ sending the initial cluster variables to elements of the form $\Delta_{c^k(\varpi_i),\widetilde{c}^\ell(\varpi_i)}^{(s)}, \qquad (s \in \mathbb{Z}, \, i \in I, k, \ell \in \mathbb{Z}),$

[FL25]	Luca Francone and Bernard Lecle 2025.
[GHL24]	Christof Geiss, David Hernandez, cluster algebras I: The simply lace
[HL10]	David Hernandez and Bernard Le $154(2)$:265–341, 2010.
[HL16]	David Hernandez and Bernard Lequantum affine algebras. <i>Algebra</i>

In example in type A_3

Let G = SL(4) and $c = s_1s_3s_2$, so that $\tilde{c} = s_2s_1s_3$. The following picture describes some finite sections of the quivers Λ , \mathcal{G}_{DQ} and Γ_c . Vertices are labelled by the cluster variables of the corresponding initial seeds in $R(G, c)^G$, $R(G, c)^U$ and R(G, c).

erc. Cluster structures on schmemes of bands. arXiv preprint arXiv:2504.14012,

, and Bernard Leclerc. Representations of shifted quantum affine algebras and eed case. Proc. Lond. Math. Soc. (3), 129(3):Paper No. e12630, 75, 2024. eclerc. Cluster algebras and quantum affine algebras. Duke Math. J.,

eclerc. Cluster algebras and category O for representations of Borel subalgebras of Number Theory, 10(9):2015–2052, 2016.