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Context

Let Λ be a finite-dimensional algebra over an algebraically closed field k and T := Kb(proj Λ).

An object M ∈ T is called a silting object if:

1 Hom(M,ΣiM) = 0 for all i > 0;

2 T = thick(M).

It is called a d-term silting object if M i = 0 for all i /∈ {−(d− 1), · · · ,−1, 0}.

Theorem 1: [AIR14][PZ23][Gar23]

We have the following diagram of morphisms of posets, where H0 denotes the 0th cohomology
functor:

{Basic 2-term silting objects in Kb(proj Λ)}

{Complete cotorsion pairs in K[−1,0](proj Λ)} {Cotorsion pairs in K[−1,0](proj Λ)}

{Functorially finite torsion pairs in modΛ} {Torsion pairs in modΛ}

∼
∼ ∼

H0

Generalisations to d-term silting objects

Fix d ≥ 2.

1 modΛ⇝ D[−d+2,0](modΛ),

D[−(d−2),0](modΛ) := {X ∈ Db(modΛ) | H>0(X) = 0,H<−d+2(X) = 0}

Extension-closed in Db(modΛ) =⇒ Has the structure of an extriangulated category with negative
extensions.

2 torsion pairs in modΛ⇝torsion pairs in D[−d+2,0](modΛ)

3 H0 ⇝ τ≥−d+2, the canonical truncation functors.

A geometric model for silting objects in type An (1 → 2 → · · · → n)
(Inspired from [PPP22], [OPS18], [BC19])

1 Mark n + 1 red points on the boundary of a disc, and connect all pairs of adjacent points
except one.

2 Mark blue points indexed from −d + 1 to 0 in a clockwise direction between every pair of
adjacent red points.

3 Special arcs connecting two blue points called slaloms are in bijection with indecomposable
objects in Kb(proj kAn): The green arc in the above figure is a slalom and corresponds to the
complex · · · → 0 → P1 → Pn → 0 → · · · concentrated in degrees −1, 0.

Main results: Type An

1 Two slaloms γ, γ′ intersect in the interior of the disc if and only if there is a positive
extension between the corresponding complexes in Kb(proj Λ).

2 Basic d-term silting objects are in bijection with collections of n slaloms that do not
intersect in the interior of the disc in the above model.

3 The number of such collections can be calculated recursively using a cutting procedure,
recovering the result of [STW20] that they are enumerated by the Fuss-Catalan
numbers.

Mutation quiver of 3-term silting objects in kA2

(Positive) Torsion pairs

Let C be an extriangulated category with a bivariant δ-functor Ei(−,−) for i ∈ Z. Let T ,F ⊆ C
be two full subcategories. The pair (T ,F) is called a torsion pair if

1 T = ⊥F ,

2 F = T ⊥.

A torsion pair is called positive if, additionally,

3 Ei(T , T ⊥) = 0 for all i ≤ 0.

(Hereditary) Cotorsion pairs [NP19]

Let C be an extriangulated category and X ,Y ⊆ C be full subcategories. Then the pair (X ,Y)
is called a cotorsion pair if

1 X = ⊥1Y ,

2 Y = X⊥1.

A cotorsion pair is called hereditary if, additionally,

3 Ei(X ,Y) = 0 for all i ≥ 1.

Theorem 2: [KY14]

The following posets are isomorphic.

{equivalence classes of silting objects in Kb(proj Λ)}

↕
{bounded t-structures in Db(modΛ) with length heart}

↕
{bounded co-t-structures in Kb(proj Λ)}

Main results: General case
1 The functor τ≥−d+2 induces the following equivalence of additive categories.

τ≥−d+2 :
K[−d+1,0](proj Λ)

proj Λ[d− 1]

∼−→ D[−d+2,0](modΛ)

2 We have the following diagram of morphisms of posets:

d- silt Λ

(comp, her)-cotors K[−d+1,0](proj Λ) (ff, pos)-torsD[−d+2,0](modΛ)

her-cotors K[−d+1,0] pos-torsD[−d+2,0](modΛ)

cotors K[−d+1,0](proj Λ) torsD[−d+2,0](modΛ)

∼

∼

∼

∼

where her: hereditary, comp: complete, ff: functorially finite, and pos: positive.

3 The posets of (positive) torsion pairs in D[−d+2,0](modΛ) and (hereditary) cotorsion pairs
in K[−d+1,0](proj Λ) are, in fact, lattices.

A non-hereditary example
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