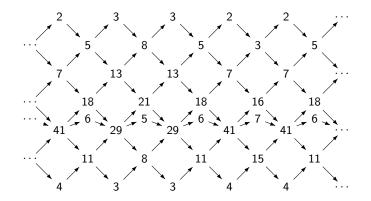
Superunitary regions

The Cartan tricl

Greg Muller

May 16th, 2025

The finiteness and enumeration of Dynkin friezes



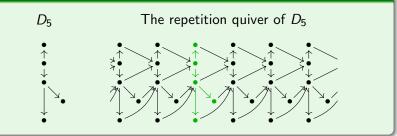
Friezes of type Q

A preliminary definition

The repetition quiver of an acyclic quiver Q consists of

- \mathbb{Z} -many copies of Q (informally called slices), with
- arrows from each slice to the next, opposite each arrow in Q.

Example: The repetition quiver of type D_5

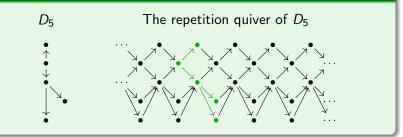


A preliminary definition

The repetition quiver of an acyclic quiver Q consists of

- \mathbb{Z} -many copies of Q (informally called slices), with
- arrows from each slice to the next, opposite each arrow in Q.

Example: The repetition quiver of type D_5



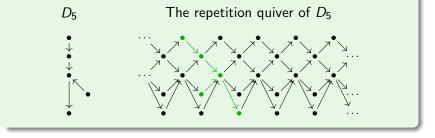
A preliminary definition

The repetition quiver of an acyclic quiver Q consists of

- \mathbb{Z} -many copies of Q (informally called slices), with
- arrows from each slice to the next, opposite each arrow in Q.

Open questions

Example: The repetition quiver of type D_5



Any two orientations of a tree have equivalent repetition quivers.

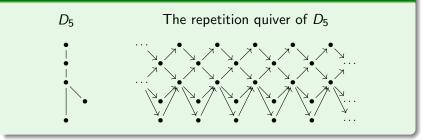
Friezes of type Q

A preliminary definition

The repetition quiver of an acyclic quiver Q consists of

- \mathbb{Z} -many copies of Q (informally called slices), with
- arrows from each slice to the next, opposite each arrow in Q.

Example: The repetition quiver of type D_5



Any two orientations of a tree have equivalent repetition quivers.

Superunitary regions

The Cartan trick

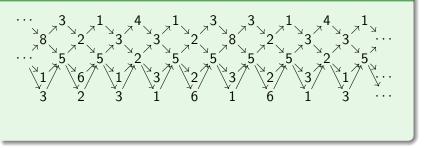
Open questions

Definition: A frieze of type Q

A frieze of type Q (or Q-frieze) puts of a positive integer on each vertex of the repetition quiver of Q, satisfying the **mesh relations**: The product of any two horizontally adjacent values equals

 $1 + \prod$ intermediate values

Example: A frieze of type D_5



Superunitary regions

The Cartan trick

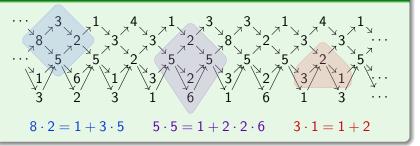
Open questions

Definition: A frieze of type Q

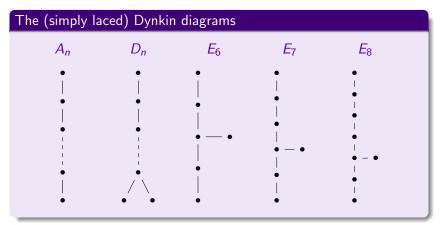
A **frieze of type** Q (or Q-**frieze**) puts of a positive integer on each vertex of the repetition quiver of Q, satisfying the **mesh relations**: The product of any two horizontally adjacent values equals

 $1 + \prod$ intermediate values

Example: A frieze of type D_5



We will be most interested in friezes of the following types.



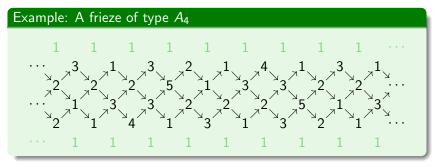
The non-simply-laced Dynkin diagrams B_n , C_n , F_4 , and G_2 require defining friezes of labelled quivers (which is possible but clunky).

		Open questions

Prop: Relation to (original) friezes

A frieze of type A_n is equivalent to a Conway-Coxeter frieze with n-many non-trivial rows.

Just delete the arrows and add rows of 1s on the top and bottom.



Superunitary regions

The Cartan trick

Theorem [Conway-Coxeter, 73]

 A_n -friezes are in bijection with triangulations of an (n + 3)-gon.

In particular, there are finitely many A_n -friezes.

Natural question

For which acyclic quivers Q are there only finitely many Q-friezes?

Superunitary regions

The Cartan trick

Theorem [Conway-Coxeter, 73]

 A_n -friezes are in bijection with triangulations of an (n + 3)-gon.

In particular, there are finitely many A_n -friezes.

Natural question

For which acyclic quivers Q are there only finitely many Q-friezes?

Answer [GM22,M23]

An acyclic quiver admits finitely many friezes iff it is Dynkin.

If Q is not Dynkin, there are infinitely many via cluster algebras. If Q is Dynkin, there are finitely many Q-friezes via two proofs:

- A non-constructive proof via the geometry of cluster algebras.
- An explicit bound on values via Cartan matrices.

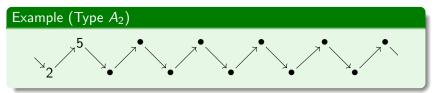
Cluster algebras

Superunitary regions

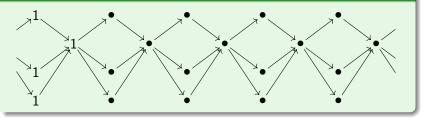
The Cartan tricl

Connection to cluster algebras

If we put non-zero values on the initial slice of the repetition quiver, we can compute the other values via the mesh relations.



Example (Type D_4)



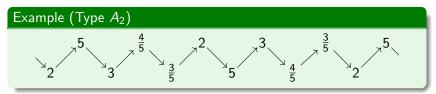
Cluster algebras

Superunitary regions

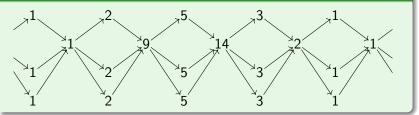
The Cartan tricl

Connection to cluster algebras

If we put non-zero values on the initial slice of the repetition quiver, we can compute the other values via the mesh relations.



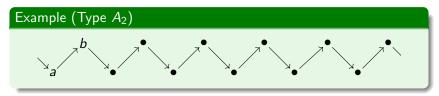
Example (Type D_4)

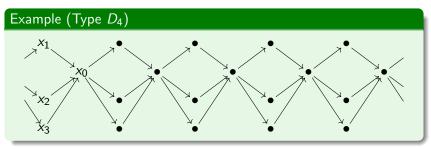


Note the resulting values will positive but not necessarily integers.

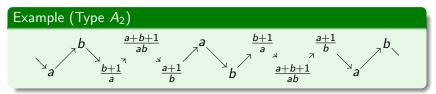
The Cartan tric 00000

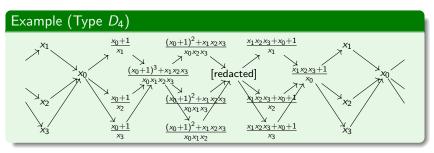
Let's derive formulas for the other values in terms of the initial ones by putting generic invertible variables on the initial slice.





Let's derive formulas for the other values in terms of the initial ones by putting generic invertible variables on the initial slice.





Hey, these are cluster variables in the cluster algebra $\mathcal{A}(Q)$ of Q!

Q-friezes	Cluster algebras 00€000	Superunitary regions	The Cartan trick 00000	Open questions

Perspective: $\mathcal{A}(Q)$ -valued friezes

We can interpret the previous diagrams as Q-friezes with values in the cluster algebra $\mathcal{A}(Q)$, rather than in the positive integers.

The preceding construction can be repeated for any acyclic quiver, and the resulting values will still be cluster variables.

Claim

For each Q, there is a unique frieze of type Q with values in $\mathcal{A}(Q)$ whose values on the initial slice are the initial cluster variables.

We will call this the generic frieze of type Q.

The generic Q-frieze is 'universal' in that any (positive integral) Q-frieze can be obtained as a specialization of its values.

Definition: Frieze points

A frieze point of a cluster algebra \mathcal{A} is a ring homomorphism

 $f:\mathcal{A} \to \mathbb{Z}$

which sends every cluster variable to a positive integer.

Prop: Friezes = frieze points

• If f is a frieze point of $\mathcal{A}(Q)$, then applying f to the generic Q-frieze produces a (positive integral) Q-frieze.

2 Every (positive integral) Q-frieze can be constructed this way.

Why?

Q-friezes

By [BNI20], $\mathcal{A}(Q)$ is generated by the cluster variables on two adjacent slices, with relations generated by the mesh relations.

<i>Q</i> -friezes	Cluster algebras 0000€0	Superunitary regions	The Cartan trick	Open questions

Prop: The existence of unitary points

Given a cluster $\{x_1, x_2, ..., x_n\}$ in $\mathcal{A}(Q)$, there is a unique frieze point $\mathcal{A}(Q) \to \mathbb{Z}$ which sends each x_i to 1.

Why?

The Laurent phenomenon! (Positivity helps but is not needed)

Corollary

Every cluster in $\mathcal{A}(Q)$ determines a frieze of type Q by applying the corresponding frieze point to the generic frieze.

Frieze constructed in this way are sometimes called unitary friezes.

<i>Q</i> -friezes	Cluster algebras 00000●	Superunitary regions	The Cartan trick	Open questions

Thm: The classification of finite-type cluster algebras [FZ]

A cluster algebra \mathcal{A} has finitely many clusters if and only if $\mathcal{A} \simeq \mathcal{A}(Q)$ for some Dynkin quiver Q.

Since ...

 ${\text{clusters in } \mathcal{A}(Q)} \simeq {\text{unitary } Q \text{-friezes}} \subseteq {Q \text{-friezes}}$

...this immediately implies the following.

Corollary

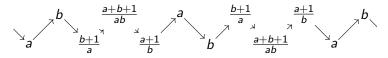
If Q is not Dynkin, there are infinitely many friezes of type Q.

Finiteness via superunitary regions

Motivational Problem

Count A_2 -friezes without using Coxter and Conway's bijection.

We've seen an A_2 -frieze corresponds to a choice of a, b such that



consists entirely of positive integers.

Equivalent Problem

Find all integers a, b for which

$$b$$
 $\frac{b+1}{a}$ $\frac{a+b+1}{ab}$ $\frac{a+1}{b}$

are positive integers.

a

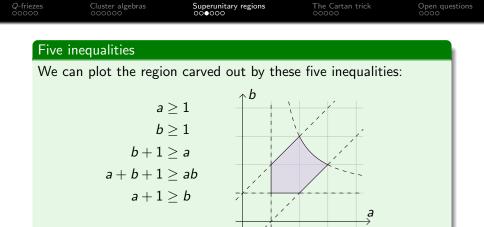
<i>Q</i> -friezes	Cluster algebras	Superunitary regions	The Cartan trick 00000	Open questions
				,

This arithmetic problem embeds into a geometric problem via a simple observation.

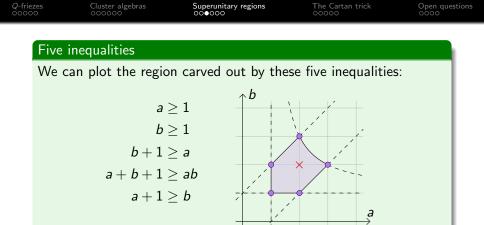
Positive integers are greater than or equal to 1.

So, any a, b defining an A_2 -frieze will also solve the following.

Weaker Problem					
Find all real numbers <i>a</i> , <i>b</i> so that					
$a \ge 1$	$b \ge 1$	$\frac{b+1}{a} \geq 1$	$\frac{a+b+1}{ab} \geq 1$	$\frac{a+1}{b} \geq 1$	



Any choice of (a, b) that gives a frieze must lie in this region.



Any choice of (a, b) that gives a frieze must lie in this region.

There are 6 choices of integers (a, b) in this 'dented pentagon'. Plugging into the cluster variables, **5** of them give friezes:

$$(1,1)$$
 $(1,2)$ $(2,1)$ $(2,3)$ $(3,2)$

Q-friezes Cluster algebras Superunitary regions The Cartan trick Open question: 00000 000000 00000 0000	<i>Q</i> -friezes		Superunitary regions	The Cartan trick 00000	Open questions
---	-------------------	--	----------------------	---------------------------	----------------

Definition: The superunitary region

The superunitary region of a cluster algebra \mathcal{A} of rank r is the subset of $\mathbb{R}_{>0}^r$ on which every cluster variable is ≥ 1 .

Etymology: 'Super' = 'greater than' and 'unitary' = 'related to 1'.

This definition assumes every cluster variable has been written as a Laurent polynomial in a distinguished initial cluster.

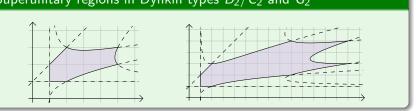
Invariant characterization

Superunitary region is homeomorphic to space of homomorphisms

 $\mathcal{A} \to \mathbb{R}$

sending every cluster variable into $[1,\infty)\subset\mathbb{R}.$

<i>Q</i> -friezes	Cluster algebras	Superunitary regions 0000€0	The Cartan trick 00000	Open questions
Superu	nitary regions ir	n Dynkin types B_2/c	C_2 and G_2	



These regions are compact, so they give finitely many possible a, b.

<i>Q</i> -friezes	Cluster algebras	Superunitary regions 0000€0	The Cartan trick 00000	Open questions
Supe	runitary regions i	n Dynkin types <i>B</i> ₂ /	C_2 and G_2	

These regions are compact, so they give finitely many possible a, b. Checking these yields **6** and **9** points corresponding to friezes.

The 'corners' of the superunitary region are precisely where a cluster is equal to 1, so they correspond to unitary friezes.

Q-friezes 00000	Cluster algebras	Superunitary regions 00000●	The Cartan trick 00000	Open questions

Theorem [Gunawan-M, on arXiv 2022]

The superunitary region of each Dynkin type has a face-preserving homeomorphism to a polytope (the generalized associahedron).

Since polytopes are compact, and the friezes correspond to certain integer-valued points (a discrete subset), a topology exercise says...

Corollary (First proof of finiteness)

There are finitely many friezes of each Dynkin type.

00000	000000	000000	00000	0000
00000	000000	000000	00000	0000

The next proof is much simpler, but requires explicit formulas.

LIICN

The Cartan matrix of an acyclic quiver

Let Q be acyclic, and index the vertices by 1, 2, ..., n so arrows are increasing. Then the **Cartan matrix** of Q is the $n \times n$ matrix with

$$C_{i,j} := \left\{ \begin{array}{cc} 2 & \text{if } i = j \\ -(\# \text{ of arrows between } i \text{ and } j) & \text{if } i \neq j \end{array} \right\}$$

Example (Type D_5)

$$Q = \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} \qquad C = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & -1 \\ 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 0 & 2 \end{bmatrix}$$

Q-friezes 00000	Cluster algebras	Superunitary regions	The Cartan trick 0●000	Open questions

Formula for mesh relations

Let $F_{i,k}$ denote the value in the *i*th vertex of the *k*th slice of a given frieze F. Then the mesh relations can be written as

$$F_{i,k}F_{i,k+1} = 1 + \prod_{j < i} F_{j,k+1}^{-\mathsf{C}_{i,j}} \prod_{j > i} F_{j,k}^{-\mathsf{C}_{i,j}}$$

We can derive a pair of bounds that only involve multiplication.

Multiplicative bounds

$$\prod_{j < i} F_{j,k+1}^{-C_{i,j}} \prod_{j > i} F_{j,k}^{-C_{i,j}} < F_{i,k} F_{i,k+1} \le 2 \prod_{j < i} F_{j,k+1}^{-C_{i,j}} \prod_{j > i} F_{j,k}^{-C_{i,j}}$$

Q-friezes 00000	Cluster algebras	Superunitary regions	The Cartan trick 0●000	Open questions

Formula for mesh relations

Let $F_{i,k}$ denote the value in the *i*th vertex of the *k*th slice of a given frieze F. Then the mesh relations can be written as

$$F_{i,k}F_{i,k+1} = 1 + \prod_{j < i} F_{j,k+1}^{-\mathsf{C}_{i,j}} \prod_{j > i} F_{j,k}^{-\mathsf{C}_{i,j}}$$

We can derive a pair of bounds that only involve multiplication.

Multiplicative bounds

$$1 < F_{i,k}F_{i,k+1}\prod_{j < i}F_{j,k+1}^{\mathsf{C}_{i,j}}\prod_{j > i}F_{j,k}^{\mathsf{C}_{i,j}} \le 2$$

$$1 < F_{i,k}F_{i,k+1} \prod_{j < i} F_{j,k+1}^{C_{i,j}} \prod_{j > i} F_{j,k}^{C_{i,j}} \le 2$$

Next, to make these expressions linear, we apply \log_2 .

$$\begin{aligned} 0 < \log_2(F_{i,k}) + \log_2(F_{i,k+1}) \\ + \sum_{j < i} \mathsf{C}_{i,j} \log_2(F_{j,k+1}) + \sum_{j > i} \mathsf{C}_{i,j} \log_2(F_{j,k}) \leq 1 \end{aligned}$$

Finally, since F is periodic, we can remove the distinction between k and k + 1 by averaging over a fundamental domain.

If F has period p, then $0 < \frac{1}{p}\sum_{k=1}^{p}\left(2\log_2(F_{i,k}) + \sum_{j\neq i}\mathsf{C}_{i,j}\log_2(F_{j,k})\right) \le 1$

$$\begin{array}{c|c} Q\text{-friezes} & Cluster algebras} & Superunitary regions} & The Cartan trick & Open questions} \\ 000000 & 00000 & 00000 & 00000 & 00000 \\ \hline \\ 1 < F_{i,k}F_{i,k+1} \prod F_{i,k+1}^{\mathsf{C}_{i,j}} \prod F_{i,k+1}^{\mathsf{C}_{i,j}} \leq 2 \end{array}$$

i < i i > i

Next, to make these expressions linear, we apply \log_2 .

$$egin{aligned} 0 < \log_2(F_{i,k}) + \log_2(F_{i,k+1}) \ &+ \sum_{j < i} \mathsf{C}_{i,j} \log_2(F_{j,k+1}) + \sum_{j > i} \mathsf{C}_{i,j} \log_2(F_{j,k}) \leq 1 \end{aligned}$$

Finally, since F is periodic, we can remove the distinction between k and k + 1 by averaging over a fundamental domain.

If F has period p, then $0 < \sum_{j=1}^n \mathsf{C}_{i,j} \sum_{k=1}^p \frac{\log_2(F_{i,k})}{p} \leq 1$

Cluster algebras

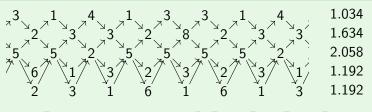
Superunitary regions

The Cartan trick 000●0 Open questions

The Cartan trick [M 2023]

If \vec{v} is the vector of average \log_2 of rows of a Dynkin frieze, each entry of the product with the Cartan matrix $C\vec{v}$ is between 0 and 1.

Example (Type D_5)



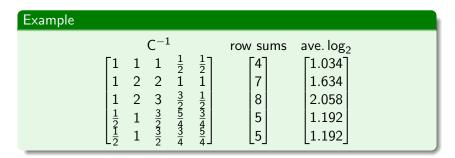
2	-1	0	0	0	[1.034]		0.434
-1	2	-1	0	0	1.634		0.176
0	-1	2	-1	-1	2.058	=	0.096
0	0	-1	2	0	1.192		0.327
0	0	-1	0	2	1.192		0.327

Superunitary regions

The Cartan trick

Corollary

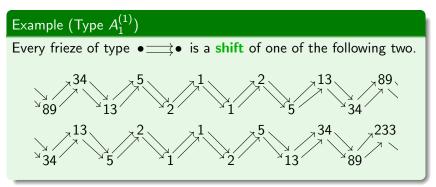
The average $\log_{\mathbb{Q}}$ s of the *i*th row of a Q-frieze is at most the sum of the *i*th row of C⁻¹.



Corollary (Second proof of finiteness)

An entry in the *i*th row of a frieze of type Γ is at most 2^{pb_i} , where *p* is the period and b_i is the sum of the *i*th row of C^{-1} .

Let's consider the simplest non-Dynkin quiver.



There are infinitely many friezes, but only on a technicality.

Natural question

For which acyclic quivers are there finitely many friezes up to shift?

riezes 000	Cluster algebras	Superunitary regions	The Cartan trick	Open questions
---------------	------------------	----------------------	------------------	----------------

My best guess

A quiver has finitely many friezes up to shift iff it is affine Dynkin.

How would one show this?

As before, big theorems in cluster algebras eliminate most cases, so proving this can be reduced to proving two conjectures.

- affine Dynkin \Rightarrow finitely many friezes up to shift.
- wild rank 2 (i.e. bc > 4) \Rightarrow infinitely many friezes up to shift.

A test case for the second part is the following.

Open problem

Show the 3-Kronecker admits infinitely many friezes up to shift.

There is a richer generalization in the language of cluster algebras.

Definition: The cluster modular group

The **cluster modular group** of a cluster algebra A is the set of automorphisms which send cluster variables to cluster variables.

Natural question

Which cluster algebras have finitely many frieze points up to the cluster modular group?

My best guess

A cluster algebra has finitely many frieze points up to the cluster modular group iff it is mutation-finite but not wild rank 2; that is,

- Dynkin, affine Dynkin, extended affine Dynkin,
- a marked surface cluster algebra,
- X₆, or X₇.

New friezes from old

There are several ways to construct a Q'-frieze from a Q-frieze.

- Folding along nice symmetries of *Q*.
- Extending (by 1) along an embedding of Q into Q'.

A dearth of atomic friezes

The only non-trivial Dynkin friezes that cannot be constructed by a repeatedly folding and extending other Dynkin friezes are:

- The D_n -friezes corresponding to non-trivial divisors of n.
- The four distinct shifts of the E₈-frieze on the intro slide.

Natural question

What is so special about this E_8 -frieze?