Some determinants and relations in Heronian friezes

Anja Šneperger

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Heronian diamond	Heronian diamond ●000	Heronian friezes 0000	Adjacent diamonds 000	Main theorem
Heronian d	iamond			

Definition (FS)

A Heronian diamond is an ordered 10-tuple of complex numbers (a, b, c, d, e, f, p, q, r, s) satisfying the following equations:

$$p^{2} = H(b, c, e), q^{2} = H(a, d, e)$$

$$r^{2} = H(a, f, b), s^{2} = H(c, f, d)$$

$$r + s = p + q$$
Hef = $(p + q)^{2} + (a - b + c - d)^{2}$

$$e(r - s) = p(a - d) + q(b - c),$$

where

$$H(x, y, z) := -x^2 - y^2 - z^2 + 2xy + 2xz + 2yz.$$

Heronian diamond	Heronian diamond 0●00	Heronian friezes 0000	Adjacent diamonds 000	Main theorem
Heronian dia	amond – moti	vation		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The measurements associated with triangulations of a plane quadrilateral satisfy the equations from the previous slide.

The measurements associated with triangulations of a plane quadrilateral satisfy the equations from the previous slide.

a, b, c, d, e, f: squared distances between corresponding vertices p, q, r, s: four times signed areas of the corresponding triangles

Instead of listing the components of a Heronian diamond (a, b, c, d, e, f, p, q, r, s) as a row of 10 numbers, we will typically arrange them in a diamond pattern:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Instead of listing the components of a Heronian diamond (a, b, c, d, e, f, p, q, r, s) as a row of 10 numbers, we will typically arrange them in a diamond pattern:

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Heronian diamond	Heronian diamond 000●	Heronian friezes 0000	Adjacent diamonds 000	Main theorem
Some notati	on			

Some notation for the future reference:

• $A_i = (x_i, y_i), A_j = (x_j, y_j), A_k = (x_k, y_k)$ points in the complex plane

- squared distance between A_i and A_j : $\mathbf{x_{ii}} := \overline{A_i A_i}^2$
- 4 signed area of the triangle $A_i A_j A_k$: S_{ijk}

Heronian diamond	Heronian diamond	Heronian friezes ●000	Adjacent diamonds	Main theorem
Heronian fr	riezes			

Heronian diamond	Heronian diamond 0000	Heronian friezes ●000	Adjacent diamonds 000	Main theorem
Heronian f	riezes			

• $(A_1, A_2, ..., A_n)$ – a labeled polygon in the complex plane

- $(A_1, A_2, ..., A_n)$ a labeled polygon in the complex plane
- each quadruple of vertices of the form (A_a, A_{a+1}, A_b, A_{b+1}) gives rise to a Heronian diamond (a and b are distinct elements of {1, 2, ..., n}, and addition is modulo n)

- $(A_1, A_2, ..., A_n)$ a labeled polygon in the complex plane
- each quadruple of vertices of the form (A_a, A_{a+1}, A_b, A_{b+1}) gives rise to a Heronian diamond (a and b are distinct elements of {1, 2, ..., n}, and addition is modulo n)

 glue those Heronian diamonds together + impose some boundary conditions → Heronian frieze of order n

Heronian frieze – example

x₅₁ X45 *x*₁₂ *x*₁₂ X_{45} X_{45} X51 x_{23} *x*₂₃ X_{34} X34 Х45 X X22 \mathbf{X} ×55 × ×11 *х*зз X S_{434} S_{454} S_{545} S_{515} S_{151} S_{121} S_{212} S_{232} S_{323} S_{343} S_{434} S_{454} ×43 4534 ×54 5145 ×15 1251 ×21 2312 ×32 3423 ×43 4534 ×54 S453 S534 S514 S145 S125 S251 S231 S312 S342 S423 S453 S534 S514 ×53 5134 ×14 1245 ×25 2351 ×31 3412 ×42 4523 ×53 5134 ×14 Š₅₁₃ S₁₃₄ Š₁₂₄ S₂₄₅ Š₂₃₅ S₃₅₁ Š₃₄₁ S₄₁₂ S₄₅₂ S₅₂₃ S₅₁₃ S₁₃₄ S ×13 1234 ×24 2345 ×35 3451 ×41 4512 ×52 5123 ×13 1234 S_{123} S_{123} S_{234} S_{234} S_{345} S_{345} S_{451} S_{451} S_{512} S_{512} S_{123} S_{1 ×12 1223 ×23 2334 ×34 3445 ×45 4551 ×51 5142 ×12 1223 ×23 S_{112} S_{122} S_{223} S_{233} S_{334} S_{344} S_{445} S_{455} S_{551} S_{511} S_{112} S_{122} S_{223} λ_{55} \times \dot{x}_{11} X44 🔀 x_{11} <u>Х</u>33 X X x_{12} x_{12} *X*₂₃ *X*₂₃ *X*₃₄ *X*₃₄ *X*₄₅ *X*₄₅ *X*₅₁ *X*₅₁ *X*₁₂ *X*₁₂ *X*₂₃ X

Figure: Fragment of a polygonal Heronian frieze of order 5

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Vanishing determinants

Theorem (Š)

Let $P = (A_1, A_2, ..., A_n)$ be a cyclic n-gon with anticlocwise ordering of vertices. Then, for every diamond of the corresponding Heronian frieze the following determinant vanishes:

$$\begin{vmatrix} x_{b(b+1)} & S_{ab(b+1)} & S_{(a+1)b(b+1)} \\ x_{a(a+1)} & S_{a(a+1)(b+1)} & S_{a(a+1)b} \\ 0 & x_{a(b+1)} & x_{(a+1)b} \end{vmatrix} = 0.$$

Heronian diamond	Heronian diamond	Heronian friezes 000●	Adjacent diamonds	Main theorem

・ロト ・ 日 ・ ・ 田 ト ・ 日 ・ ・ 日 ・ ・ 日 ・

Heronian diamond	Heronian diamond 0000	Heronian friezes 0000	Adjacent diamonds ●00	Main theorem
Adjacent d	iamonds			

Theorem (Š)

Let $P = (A_1, A_2, ..., A_{m+1})$ be a cyclic (m + 1) - gon, with anticlockwise ordering of the vertices, where $m \ge 2$ is an integer. Then

$$S_{1,m,m+1}\prod_{i=2}^{m-1} x_{i,m+1} = \sum_{j=1}^{m-1} S_{j,j+1,m+1} \frac{\prod_{k=1}^{m} x_{k,m+1}}{x_{j,m+1} x_{j+1,m+1}},$$

where the entries S_{***} and x_{**} are the entries of the corresponding Heronian frieze.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Heronian diamond	Heronian diamond 0000	Heronian friezes 0000	Adjacent diamonds ○●○	Main theorem
Adjacent d	iamonde			

Corollary

 $P = (A_1, A_2, ..., A_n)$ – a cyclic n-gon, F – the corresponding Heronian frieze; if $m \in \mathbb{Z}$, $2 \le m \le n - 1$, and q, q + 1, ..., q + m - 2, r, r + 1 are distinct, then

$$S_{q,r,r+1} \prod_{k=q+1}^{q+m-2} x_{k,r+1} =$$

 $S_{q,q+1,r+1}x_{q+2,r+1}x_{q+3,r+1}\cdots x_{q+m-2,r+1}x_{r,r+1} + S_{q+1,q+2,r+1}x_{q,r+1}x_{q+3,r+1}\cdots x_{q+m-2,r+1}x_{r,r+1} \\ \vdots \\ + S_{q+m-2,r,r+1}x_{q,r+1}x_{q+1,r+1}\cdots x_{q+m-4,r+1}x_{q+m-3,r+1}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Heronian diamond	Heronian diamond	Heronian friezes 0000	Adjacent diamonds 00●	Main theorem
Example				

Let $P = (A_1, A_2, ..., A_{10})$ be a cyclic 10-gon, with anticlockwise ordering of vertices, and m = 5.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Heronian diamond	Heronian diamond 0000	Heronian friezes 0000	Adjacent diamonds 00●	Main theorem
Example				

Let $P = (A_1, A_2, ..., A_{10})$ be a cyclic 10-gon, with anticlockwise ordering of vertices, and m = 5. Consider the vertices $A_3, A_4, A_5, A_6, A_9, A_{10}$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Heronian diamond	Heronian diamond 0000	Heronian friezes 0000	Adjacent diamonds 00●	Main theorem
Example				

Let $P = (A_1, A_2, ..., A_{10})$ be a cyclic 10-gon, with anticlockwise ordering of vertices, and m = 5. Consider the vertices $A_3, A_4, A_5, A_6, A_9, A_{10}$. We get

$$\begin{split} S_{3,9,10} x_{4,10} x_{5,10} x_{6,10} &= S_{3,4,10} x_{5,10} x_{6,10} x_{9,10} + S_{4,5,10} x_{3,10} x_{6,10} x_{9,10} \\ &\quad + S_{5,6,10} x_{3,10} x_{4,10} x_{9,10} + S_{6,9,10} x_{3,10} x_{4,10} x_{5,10}. \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Heronian diamond	Heronian diamond	Heronian friezes 0000	Adjacent diamonds 000	Main theorem ●○
Main Theor	rem			

Theorem (Š)

Let $P = (A_1, A_2, ..., A_n)$ be a cyclic n-gon with vertices ordered anticlockwise, and n > 4 an even number. Then

$$\sum_{m=1}^{n} (-1)^{m+1} x(m) S(m) = 0,$$

where

$$x(m) = x_{12} x_{34}^{c} \prod_{\substack{l=m\\l \text{ even}}}^{n-2} x_{l,l+1}^{l-\frac{2}{2}} \prod_{\substack{l=5\\l \text{ odd}}}^{m-1} x_{l,l+1}^{l-\frac{3}{2}},$$
$$S(m) = \left(\prod_{k=1}^{m-1} \left(\prod_{\substack{l=k+1\\l \text{ even}}}^{m-2} S_{k,l,l+1} \prod_{\substack{l=m+1\\l \text{ odd}}}^{n-1} S_{k,l,l+1}\right)\right) \left(\prod_{\substack{k=m\\l \text{ odd}}}^{n-3} \prod_{\substack{l=k+2\\l \text{ odd}}}^{n-1} S_{k+1,l,l+1}\right)$$

for even m.

Heronian diamond	Heronian diamond	Heronian friezes	Adjacent diamonds	Main theorem
	0000	0000	000	⊙●
Example				

Take n = 6. We get

$$\begin{aligned} x_{12}x_{45}S_{234}S_{256}S_{356}S_{456} - x_{12}x_{45}S_{134}S_{156}S_{356}S_{456} + \\ x_{12}x_{45}S_{124}S_{156}S_{256}S_{456} - x_{12}x_{45}S_{123}S_{156}S_{256}S_{356} + \\ x_{45}x_{56}S_{123}S_{124}S_{126}S_{346} - x_{12}x_{56}S_{123}S_{145}S_{245}S_{345} = 0. \end{aligned}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

•••

Figure 12: 20