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1 preliminaries

This note gives results about the convergence of the infinite negative Gaussian integer continued
fraction (GICF)

γ = [b0, b1, . . . , bk, . . .] = b0 −
1

b1 −
1

b2 − · · ·
with bi ∈ Z[i], and bk 6= 0 for k > 0. Truncating the continued fraction at bk, we obtain the

k′th convergent, the Gaussian rational
pk
qk

, with pk, qk ∈ Z[i], and qk 6= 0 if k > 0. We use the

recurrences given by(
pk+1 pk
qk+1 qk

)
=

(
pk pk−1
qk qk−1

)(
bk 1
−1 0

)
;
p0
q0

=
1

0
,
p1
q1

=
b0
1
.

The continued fraction γ converges if the infinite sequence

(
pk
qk

)
converges in C.

As C is complete, γ converges if and only if∣∣∣∣pkqk − pk−1
qk−1

∣∣∣∣ =

∣∣∣∣pkqk−1 − pk−1qkqk−1qk

∣∣∣∣ =
1

|qk−1||qk|
−→ 0 as k → ∞,

that is if and only if |qk−1||qk| → ∞ as k →∞.

It is straightforward to prove that the GICF (i, i, i, i, . . .) converges to 1
2 (1 +

√
5)i, and that

the GICF (1,−1, 1,−1, . . .) converges to 1
2 (1 +

√
5). It is also straightforward to prove that the

GICF (1 + i, 1− i, 1 + i, 1− i, . . .) does not converge. We have not been able to find a necessary
and sufficient condition for convergence which only depends on the coefficients. Instead, we
give sufficent conditions in the form of exclusion sets. An exclusion set E is a sets of strings of
coefficients such that, if the list of coefficients of a GICF does not contain, infinitely often, any
strings in E , then it converges.

2 A first exclusion set

The following theorem is well known. We give a proof for completeness.
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Theorem 2.1. The GICF [b0, b1, . . . , bk, . . .] converges if |bi| ≥ 2 for all i > 0.

Proof. Aiming for a proof by induction, we note that |q1| > |q0|, and assume that |qi| > |qi−1|
for all i ≤ k. Then

|qk+1| = |bkqk − qk−1| ≥ ||bk||qk| − |qk−1|| > |qk| ||bk| − 1| .

So a GICF converges if it has no coefficients with modulus stictly less than 2 occuring infinitely
often, which gives us an exclusion set.

Corollary 2.2. The set {(0),±(1),±(i),±(1± i)} is an exclusion set for GICFs.

3 A better exclusion set

The exclusion set given in Corollary 2.2 excludes continued fractions such as (i, i, i, . . .) which
are known to converge. We attempt to find a more satisfactory result.

Theorem 3.1. The GICF [b0, b1, . . . , bk, . . .] converges if |bk−1bk − 1| ≥ 3 for all k > 0.

Proof. Aiming for a proof by induction, note that |q2| = |b1| > |q0|, and assume that |qi| > |qi−2|
for all i ≤ k. From qk+1 = bkqk − qk−1, we obtain bkqk = qk+1 + qk−1, so we have

|bk||qk−2| < |bk|||qk| ≤ |qk+1 + |qk−1|,

and also, putting gk = bk−1bk,

|qk+1| = |bk(bk−1qk − qk−2)− qk−1|

≥ ||gk − 1||qk−1| − |bk||qk−2||

> |gk − 1||qk−1| − |qk−1| − |qk+1.|

As |gk−1| ≥ 3, this implies |qk+1 > 2|qk−1|− |qk+1|. It follows that |qk+1| > |qk−1|, therefore
|qk−1||qk| < |qk||qk+1| for all k, and the continued fraction converges.

So a GICF converges unless its list if coefficients is such that the product gi of two successive
coefficients is not such that |gi − 1| < 3 infinitely often. So an exclusion set consists of those
pairs whose product is a Gaussian integer situated inside the circle centred at 1 with radius 3,
as shown in Figure 3.1.

Corollary 3.2. An exclusion set for GICFs consists of those pairs whose product is in the set

{(0),±(1),±(i),±2i,±(1± i),±(1± 2i), 2, 2± i, 2± 2i, 3, 3± i, 3± 2i}.
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Figure 3.1: The cardioid r = 2(1 + cos θ) and the circle centered at 1 with radius 3 (dotted).

4 A more satisfactory exclusion set

The exclusion set given in Corollary 3.2 excludes fewer continued fractions than that in Corollary
2.2. However it still excludes continued fractions such as (i, i, i, . . .) which are known to converge.
We continue to attempt to find a more satisfactory result.

Theorem 4.1. The GICF [b0, b1, . . . , bk, . . .] converges if rk > 2(1 + cos θk) for all k > 0, where

rke
iθk = gk = bk−1bk.

Proof.

For k > 1, let zk =
qk−2
qk

, wk =
1

zk+1
=
qk+1

qk−1
, and ak =

qk−1
qk

.

The assumption in the theorem implies that gk is outside the cardioid rk = 2(1 + cos θk), as
shown in Figure 3.1. The Gaussian integers inside the circle with centre 1 and radius 2 are inside
the cardioid, so we can assume that gk is not such that |gk − 1| < 2, and, in particular, that
|g2 − 1| ≥ 2. Then we have |z2| = 0 < 1 and, as |q3| = |b2b1 − 1| = |g2 − 1| ≥ 2, z3 = q1

q3
< 1.

Aiming for a proof by induction, we now show that, if |zi| < 1 for all i ≤ k, then |wk| > 1 and
so |zk+1| < 1 for all k.

From qk = bk−1qk−1 − qk−2, 1 = akbk−1 − zk so that ak =
1 + zk
bk−1

.

From qk+1 = bkqk − qk−1, wk =
bk
ak
− 1 =

gk
1 + zk

− 1.

Therefore, putting fk(z) =
gk

1 + z
− 1, we have fk(zk) = wk.

For ease of legibility, we omit the suffix k in what follows. Let ∆ be the disk {z : |z| < 1}. Define
f1(z) = 1 + z, f2(z) = 1

z , f3(z) = rz, f4(z) = zeiθ and f5(z) = z − 1, so that

f = f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1(z).
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Figure 4.1: The transformation of the unit circle |z < 1| by the function f : f(z) = gk
1+z − 1

As shown in Figure 4.1, f1(∆) = {z : |z − 1| < 1}; f2 ◦ f1(∆) = {z = x+ iy, x, y ∈ R : x > 1/2}
and f3 ◦ f2 ◦ f1(∆) = {z = x+ iy, x, y ∈ R : x > r/2}.

Let l be the line x = r/2. The function f4 rotates it through an angle θ about the origin,
giving a line f4(l) which crosses the real axis at r

2 cos θ , and the imaginary axis at r
2 sin θ i. Then f5

translates the line f4(l) through −1, so that f(∆) is a line which cuts the real axis at r
2 cos θ − 1.

If d is the distance from the origin to the line f(∆), we have

d

r/2
=

r
2 cos θ
r

2 cos θ − 1
, so that d =

r

2
− cos θ.

Then |w| > 1 if d > 1, and therefore if r > 2(1 + cos θ) the continued fraction converges.


