Spherical friezes

Katie Waddle University of Michigan 1 Coxeter-Conway friezes: geometric interpretations

2 Euclidean distance geometry: Heronian friezes

3 Spherical distance geometry: Spherical Heronian friezes

K. Waddle, Spherical friezes, arXiv:2501.03587, 2025.

Consider a cyclic quadrilateral with consecutive sides a, b, c, dand diagonals e, f. Then ac + bd = ef.

Consider a cyclic quadrilateral with consecutive sides a, b, c, dand diagonals e, f. Then ac + bd = ef.

Geometric interpretations

Theorem [Ptolemy, pprox 150 CE]

Let d_{ij} be the distance from A_i to A_j . Then

 $d_{12}d_{34} + d_{14}d_{23} = d_{13}d_{24}.$

Geometric interpretations

Theorem [Ptolemy, pprox 150 CE]

Let d_{ij} be the distance from A_i to A_j . Then

 $d_{12}d_{34} + d_{14}d_{23} = d_{13}d_{24}.$

Theorem [Casey, 1866]

 $t_{12}t_{34} + t_{14}t_{23} = t_{13}t_{24}$

Let d_{ij} be the distance from A_i to A_j . Then

 $d_{12}d_{34} + d_{14}d_{23} = d_{13}d_{24}.$

Theorem [Casey, 1866]

 $t_{12}t_{34} + t_{14}t_{23} = t_{13}t_{24}$

Distance geometry is the study of point configurations via intrinsic measurements such as pairwise distances.

Distance geometry is the study of point configurations via intrinsic measurements such as pairwise distances.

Question

In \mathbb{R}^2 , what collection of O(n) measurements uniquely determines a labeled set of *n* points up to oriented isometry?

Distance geometry is the study of point configurations via intrinsic measurements such as pairwise distances.

Question

In \mathbb{R}^2 , what collection of O(n) measurements uniquely determines a labeled set of *n* points up to oriented isometry?

The dimension of the configuration space of *n* points in \mathbb{R}^2 is 2n - 3.

Distance geometry is the study of point configurations via intrinsic measurements such as pairwise distances.

Question

In \mathbb{R}^2 , what collection of O(n) measurements uniquely determines a labeled set of *n* points up to oriented isometry?

The dimension of the configuration space of *n* points in \mathbb{R}^2 is 2n - 3. A triangulation of an *n*-gon has 2n - 3 pairwise distances.

Distance geometry is the study of point configurations via intrinsic measurements such as pairwise distances.

Question

In \mathbb{R}^2 , what collection of O(n) measurements uniquely determines a labeled set of *n* points up to oriented isometry?

The dimension of the configuration space of *n* points in \mathbb{R}^2 is 2n - 3. A triangulation of an *n*-gon has 2n - 3 pairwise distances.

Observation

Distances corresponding to a triangulation are not sufficient to reconstruct a configuration up to oriented isometry.

Distance geometry is the study of point configurations via intrinsic measurements such as pairwise distances.

Question

In \mathbb{R}^2 , what collection of O(n) measurements uniquely determines a labeled set of *n* points up to oriented isometry?

The dimension of the configuration space of *n* points in \mathbb{R}^2 is 2n - 3. A triangulation of an *n*-gon has 2n - 3 pairwise distances.

Observation

Distances corresponding to a triangulation are not sufficient to reconstruct a configuration up to oriented isometry.

Question

How can we supplement the data corresponding to a triangulation to enable unique reconstruction of an *n*-point configuration, up to oriented isometry?

The Cayley-Menger determinant

Definition

Given points A_1, \ldots, A_n in a Euclidean space \mathbb{R}^d , let x_{ij} denote the squared distance between A_i and A_j . The associated Cayley-Menger determinant is defined by: $\Gamma^0 \quad 1 \quad 1 \quad \cdots \quad 1 \quad 1 \quad 1$

$$M_n^0(x_{12}, x_{13}, \dots, x_{n-1,n}) = \det \begin{bmatrix} 1 & 0 & x_{12} & \cdots & x_{1,n-1} & x_{1,n} \\ 1 & x_{12} & 0 & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{1,n-1} & \cdots & \cdots & 0 & x_{n-1,n} \\ 1 & x_{1,n} & \cdots & \cdots & x_{n,n-1} & 0 \end{bmatrix}$$

The Cayley-Menger determinant

Definition

Given points A_1, \ldots, A_n in a Euclidean space \mathbb{R}^d , let x_{ij} denote the squared distance between A_i and A_j . The associated Cayley-Menger determinant is defined by: $\begin{bmatrix} 0 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$

$$\mathcal{M}_{n}^{0}(x_{12}, x_{13}, \dots, x_{n-1,n}) = \det \begin{bmatrix} 1 & 0 & x_{12} & \cdots & x_{1,n-1} & x_{1,n} \\ 1 & x_{12} & 0 & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{1,n-1} & \cdots & \cdots & 0 & x_{n-1,n} \\ 1 & x_{1,n} & \cdots & \cdots & x_{n,n-1} & 0 \end{bmatrix}$$

Theorem

Consider a simplex $A_1 \cdots A_{d+1}$ in \mathbb{R}^d , with volume V. Let x_{ij} denote the squared distance from A_i to A_j . Then

$$V^2 = rac{(-1)^{d+1}}{(d!)^2 \cdot 2^d} M^0_{d+1}(x_{12}, x_{13}, \dots, x_{d,d+1}).$$

The Cayley-Menger determinant

Definition

Given points A_1, \ldots, A_n in a Euclidean space \mathbb{R}^d , let x_{ij} denote the squared distance between A_i and A_j . The associated Cayley-Menger determinant is defined by: $\begin{bmatrix} 0 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$

$$\mathcal{M}_{n}^{0}(x_{12}, x_{13}, \dots, x_{n-1,n}) = \det \begin{bmatrix} 1 & 0 & x_{12} & \cdots & x_{1,n-1} & x_{1,n} \\ 1 & x_{12} & 0 & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{1,n-1} & \cdots & 0 & x_{n-1,n} \\ 1 & x_{1,n} & \cdots & \cdots & x_{n,n-1} & 0 \end{bmatrix}$$

Theorem	Corollary
Consider a simplex $A_1 \cdots A_{d+1}$ in \mathbb{R}^d , with volume V. Let x_{ij} denote the squared	Given $A_1, A_2, A_3, A_4 \in \mathbb{R}^2$, we have $M_4^0(x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}) = 0.$
distance from A_i to A_j . Then	
$V^2 = rac{(-1)^{d+1}}{(d!)^2 \cdot 2^d} M^0_{d+1}(x_{12}, x_{13}, \dots, x_{d,d+1}).$	A_1 A_4 A_4

We will use the notation

$$\begin{aligned} \mathcal{H}(a,b,c) &= -M_3^0(a,b,c) \\ &= -\det \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & a & b \\ 1 & b & c & 0 \end{bmatrix} \\ &= -a^2 - b^2 - c^2 + 2ab + 2ac + 2bc. \end{aligned}$$

Theorem [Heron, ≈ 250 CE]

Let $A_1A_2A_3$ be a triangle with squared side lengths a, b, c. Then

$$(\underbrace{4 \cdot \text{area of } A_1 A_2 A_3}_{S})^2 = H(a, b, c).$$

The converse is also true if we work over \mathbb{C} .

- $r^2 = H(a, f, b)$
- $s^2 = H(c, f, d)$

- $s^2 = H(c, f, d)$
- r + s = p + q

Distance geometry on a sphere

Let $\mathbf{S} \subset \mathbb{R}^3$ be a sphere with radius R centered at the origin. Set $K = \frac{1}{R^2}$.

Problem

Identify a collection of O(n) measurements that uniquely determines a labeled set of *n* points on **S**, considered up to oriented isometry. Write the corresponding formulas explicitly.

Distance geometry on a sphere

Let $\mathbf{S} \subset \mathbb{R}^3$ be a sphere with radius R centered at the origin. Set $K = \frac{1}{R^2}$.

Problem

Identify a collection of O(n) measurements that uniquely determines a labeled set of *n* points on **S**, considered up to oriented isometry. Write the corresponding formulas explicitly.

Challenge

We want *rational* formulas. This rules out the use of geodesic distances, spherical areas, etc.

Distance geometry on a sphere

Let $\mathbf{S} \subset \mathbb{R}^3$ be a sphere with radius R centered at the origin. Set $K = \frac{1}{R^2}$.

Problem

Identify a collection of O(n) measurements that uniquely determines a labeled set of *n* points on **S**, considered up to oriented isometry. Write the corresponding formulas explicitly.

Challenge

We want *rational* formulas. This rules out the use of geodesic distances, spherical areas, etc.

Definition

$$S^{K}(A_{1}, A_{2}, A_{3}) = \frac{12}{R}V(OA_{1}A_{2}A_{3})$$

Spherical Cayley-Menger determinant [T. Tao, 2019]

As before, $K = \frac{1}{R^2}$. We will use the notation

$$H^{K}(a, b, c) = \frac{K}{2} \det \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & a & c & \frac{1}{K} \\ 1 & a & 0 & b & \frac{1}{K} \\ 1 & c & b & 0 & \frac{1}{K} \\ 1 & \frac{1}{K} & \frac{1}{K} & \frac{1}{K} & 0 \end{bmatrix}$$
$$= -a^{2} - b^{2} - c^{2} + 2ab + 2ac + 2bc - Kabc.$$

Spherical Cayley-Menger determinant [T. Tao, 2019]

As before, $K = \frac{1}{R^2}$. We will use the notation

$$H^{K}(a, b, c) = \frac{K}{2} \det \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & a & c & \frac{1}{K} \\ 1 & a & 0 & b & \frac{1}{K} \\ 1 & c & b & 0 & \frac{1}{K} \\ 1 & \frac{1}{K} & \frac{1}{K} & \frac{1}{K} & 0 \end{bmatrix}$$

= $-a^{2} - b^{2} - c^{2} + 2ab + 2ac + 2bc - Kabc.$

Spherical Heron's formula

$$(S^{\kappa})^2 = H^{\kappa}(a, b, c).$$

The converse holds if we work over \mathbb{C} .

а

Problem

Given measurement data corresponding to a triangulation of a polygon (squared side distances and S^{K} measurements), compute all remaining distance measurements.

p, q, r, s are S^{κ} measurements (normalized signed volumes)

p, q, r, s are S^{κ} measurements (normalized signed volumes)

•
$$p^2 = H^K(b, c, e)$$

•
$$q^2 = H^K(a, d, e)$$

•
$$r^2 = H^K(a, f, b)$$

•
$$s^2 = H^K(c, f, d)$$

p, q, r, s are S^{K} measurements (normalized signed volumes)

....

~

•
$$p^2 = H^{\kappa}(b, c, e)$$

• $q^2 = H^{\kappa}(a, d, e)$
• $r^2 = H^{\kappa}(a, f, b)$
• $s^2 = H^{\kappa}(c, f, d)$
• $p + q = r + s + \frac{\kappa}{2}(ap + bq - er)$
• $p + q = r + s + \frac{\kappa}{2}(fp - cr - bs)$
• $p + q = r + s + \frac{\kappa}{2}(dp + cq - es)$
• $p + q = r + s + \frac{\kappa}{2}(fq - dr - as)$

p, q, r, s are S^{K} measurements (normalized signed volumes)

•
$$p^2 = H^K(b, c, e)$$

•
$$q^2 = H^K(a, d, e)$$

•
$$r^2 = H^K(a, f, b)$$

•
$$s^2 = H^K(c, f, d)$$

•
$$p + q = r + s + \frac{K}{2}(ap + bq - er)$$

•
$$e(r-s) = p(a-d) + q(b-c)$$

p, q, r, s are S^{κ} measurements (normalized signed volumes)

•
$$p^2 = H^K(b, c, e)$$

•
$$q^2 = H^K(a, d, e)$$

•
$$r^2 = H^K(a, f, b)$$

•
$$s^2 = H^K(c, f, d)$$

•
$$p+q=r+s+\frac{K}{2}(ap+bq-er)$$

•
$$e(r-s) = p(a-d) + q(b-c)$$

• 4ef =
$$(p+q)^2 + (a-b+c-d)^2 - Ke(a-b)(c-d)^2$$

Spherical Heronian diamond

Definition

A spherical Heronian diamond is a 10-tuple (a, b, c, d, e, f, p, q, r, s) satisfying the equations

(1)
$$p^2 = H^K(b, c, e)$$
 $q^2 = H^K(a, d, e)$

(2)
$$r^2 = H^K(a, f, b)$$
 $s^2 = H^K(c, f, d)$

(3)
$$p+q=r+s+\frac{K}{2}(ap+bq-er)$$

(4)
$$e(r-s) = p(a-d) + q(b-c)$$

(5)
$$4ef = (p+q)^2 + (a-b+c-d)^2 - Ke(a-b)(c-d)$$

Spherical Heronian diamond: propagation rule

Proposition [W., 2025]

Suppose that a, b, c, d, e, p, q satisfy spherical Heronian relations (1). Assuming $e \notin \{0, \frac{4}{K}\}$, there exist unique f, r, s such that (a, b, c, d, e, f, p, q, r, s) is a spherical Heronian diamond. Namely,

$$f = \frac{(p+q)^2 + (a-b+c-d)^2 - Ke(a-b)(c-d)}{4e(1-\frac{Ke}{4})},$$

$$r = \frac{p(e+a-d-\frac{Kae}{2}) + q(e-c+b-\frac{Kbe}{2})}{2e(1-\frac{Ke}{4})},$$

$$s = \frac{p(e-a+d-\frac{Kde}{2}) + q(e+c-b-\frac{Kce}{2})}{2e(1-\frac{Ke}{4})}.$$

Spherical Heronian friezes

$$K = \frac{1}{49}$$

Main results

The entries along a traversing path determine the entire frieze.

Theorem [W., 2025]

A sufficiently generic spherical Heronian frieze is periodic, has glide symmetry, and exhibits a form of the Laurent phenomenon.

Theorem [W., 2025]

Every generic spherical Heronian frieze comes from a polygon on the complexified sphere. This polygon is unique.

Thank you!

Metropolitan Museum of Art 4000 BCE

- J. H. Conway and H. S. M Coxeter, Triangulated polygons and frieze patterns, *Math. Gaz.* **57** (1973), no. 400, 87–94, no. 401, 87–94.
- H. S. M. Coxeter, Frieze patterns, Acta Arith. 18 (1971), no. 1, 297–310.
- S. Fomin and L. Setiabrata, Heronian friezes, *Int. Math. Res. Not.* **2021** (2021), no. 1, 648–694.
- T. Tao, The spherical Cayley-Menger determinant and the radius of the Earth, 2019.
- K. Waddle, *Spherical friezes*, 2025.

What next?

One application of spherical Heronian friezes is to measuring and computing distances on a globe.

Question

What if we have a point (or points) on a different sphere, like a satellite?