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A combinatorial interpretation

Theorem [Ptolemy, ≈ 150 CE]

Consider a cyclic quadrilateral with consecutive sides a, b, c , d
and diagonals e, f . Then ac + bd = ef .
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Geometric interpretations

Theorem [Ptolemy, ≈ 150 CE]

Let dij be the distance from Ai to Aj . Then

d12d34 + d14d23 = d13d24.

Theorem [Casey, 1866]

t12t34 + t14t23 = t13t24

t34

t14

t12

t23
t24

t13

Theorem [Penner, 1987]

λ12λ34 + λ14λ23 = λ13λ24

γ12

γ23

γ34

γ14

γ13
γ24
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Distance geometry

Distance geometry is the study of point configurations via intrinsic measurements
such as pairwise distances.

Question

In R2, what collection of O(n) measurements uniquely determines a labeled set
of n points up to oriented isometry?

The dimension of the configuration space of n points in R2 is 2n − 3.
A triangulation of an n-gon has 2n − 3 pairwise distances.

Observation

Distances corresponding to a triangulation are not sufficient to
reconstruct a configuration up to oriented isometry.

Question
How can we supplement the data corresponding to a triangulation to enable
unique reconstruction of an n-point configuration, up to oriented isometry?
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The Cayley-Menger determinant

Definition

Given points A1, . . . ,An in a Euclidean space Rd , let xij denote the squared
distance between Ai and Aj . The associated Cayley-Menger determinant is
defined by:

M0
n (x12, x13, . . . , xn−1,n) = det


0 1 1 ··· 1 1
1 0 x12 ··· x1,n−1 x1,n

1 x12 0
...

...
...

...
. . .

...
...

1 x1,n−1 ··· ··· 0 xn−1,n

1 x1,n ··· ··· xn,n−1 0

.

Theorem

Consider a simplex A1 · · ·Ad+1 in Rd , with
volume V . Let xij denote the squared
distance from Ai to Aj . Then

V 2 = (−1)d+1

(d!)2·2d M
0
d+1(x12, x13, . . . , xd,d+1) .

Corollary

Given A1,A2,A3,A4 ∈ R2, we have
M0

4 (x12, x13, x14, x23, x24, x34) = 0.

A1
A4

A2 A3
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Heron’s formula

We will use the notation

H(a, b, c) = −M0
3 (a, b, c)

= − det

[
0 1 1 1
1 0 a b
1 a 0 c
1 b c 0

]
= −a2 − b2 − c2 + 2ab + 2ac + 2bc.

Theorem [Heron, ≈ 250 CE]

Let A1A2A3 be a triangle with squared side lengths a, b, c . Then

(4 · area of A1A2A3︸ ︷︷ ︸
S

)2 = H(a, b, c).

The converse is also true if we work over C.
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Solution of the reconstruction problem on the Euclidean
plane [Fomin-Setiabrata, 2021]

p, q, r , s are normalized
signed areas

p

q

b c

da

e
r

s

b c

da
f

p2 = H(b, c , e)

q2 = H(a, d , e)

r2 = H(a, f , b)

s2 = H(c , f , d)
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q2 = H(a, d , e)

r2 = H(a, f , b)

s2 = H(c , f , d)

r + s = p + q

e(r − s) = p(a− d) + q(b − c)

4ef = (p + q)2 + (a− b + c − d)2
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Distance geometry on a sphere

Let S ⊂ R3 be a sphere with radius R centered at the origin. Set K = 1
R2 .

Problem

Identify a collection of O(n) measurements that uniquely determines a labeled set
of n points on S, considered up to oriented isometry. Write the corresponding
formulas explicitly.

Challenge

We want rational formulas.
This rules out the use of geodesic distances, spherical areas, etc.

Definition

SK (A1,A2,A3) =
12

R
V (OA1A2A3)

O

A3

A1

A2
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Spherical Cayley-Menger determinant [T. Tao, 2019]

As before, K = 1
R2 . We will use the notation

HK (a, b, c) = K
2 det


0 1 1 1 1
1 0 a c 1

K

1 a 0 b 1
K

1 c b 0 1
K

1 1
K

1
K

1
K 0


= −a2 − b2 − c2 + 2ab + 2ac + 2bc − Kabc.

Spherical Heron’s formula

(SK )2 = HK (a, b, c).

a
b

c

The converse holds if we work over C.
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Reconstruction problem on the sphere

Problem

Given measurement data corresponding to a triangulation of a polygon (squared
side distances and SK measurements), compute all remaining distance
measurements.

p, q, r , s are SK measurements
(normalized signed volumes)

p

q

b c

d
a

e
r

s

b c

d
a

f
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Solution on the sphere [W., 2025]

p, q, r , s are SK measurements
(normalized signed volumes)

p

q

b c

d
a

e
r

s

b c

d
a

f

p2 = HK (b, c , e)

q2 = HK (a, d , e)

r2 = HK (a, f , b)

s2 = HK (c , f , d)
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Solution on the sphere [W., 2025]

p, q, r , s are SK measurements
(normalized signed volumes)

p

q

b c

d
a

e
r

s

b c

d
a

f

p2 = HK (b, c , e)

q2 = HK (a, d , e)

r2 = HK (a, f , b)

s2 = HK (c , f , d)

p + q = r + s + K
2 (ap + bq − er)

p + q = r + s + K
2 (fp − cr − bs)

p + q = r + s + K
2 (dp + cq − es)

p + q = r + s + K
2 (fq − dr − as)
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Solution on the sphere [W., 2025]

p, q, r , s are SK measurements
(normalized signed volumes)

p

q

b c

d
a

e
r

s

b c

d
a

f

p2 = HK (b, c , e)

q2 = HK (a, d , e)

r2 = HK (a, f , b)

s2 = HK (c , f , d)

p + q = r + s + K
2 (ap + bq − er)

e(r − s) = p(a− d) + q(b − c)
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Solution on the sphere [W., 2025]

p, q, r , s are SK measurements
(normalized signed volumes)

p

q

b c

d
a

e
r

s

b c

d
a

f

p2 = HK (b, c , e)

q2 = HK (a, d , e)

r2 = HK (a, f , b)

s2 = HK (c , f , d)

p + q = r + s + K
2 (ap + bq − er)

e(r − s) = p(a− d) + q(b − c)

4ef = (p + q)2 + (a− b + c − d)2 − Ke(a− b)(c − d)
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Spherical Heronian diamond

q

p

r s

b c

da

ef

d

b c

p

e

q

a

r

f

s

Definition

A spherical Heronian diamond is a 10-tuple (a, b, c , d , e, f , p, q, r , s) satisfying the
equations

p2 = HK (b, c , e) q2 = HK (a, d , e)(1)

r2 = HK (a, f , b) s2 = HK (c , f , d)(2)

p + q = r + s + K
2 (ap + bq − er)(3)

e(r − s) = p(a− d) + q(b − c)(4)

4ef = (p + q)2 + (a− b + c − d)2 − Ke(a− b)(c − d)(5)
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Spherical Heronian diamond: propagation rule

q

p

r s

b c

da

ef

d

b c

p

e

q

a

r

f

s

Proposition [W., 2025]

Suppose that a, b, c , d , e, p, q satisfy spherical Heronian relations (1).
Assuming e ̸∈

{
0, 4

K

}
, there exist unique f , r , s such that (a, b, c , d , e, f , p, q, r , s)

is a spherical Heronian diamond. Namely,

f = (p+q)2+(a−b+c−d)2−Ke(a−b)(c−d)

4e(1− Ke
4 )

,

r =
p(e+a−d− Kae

2 )+q(e−c+b− Kbe
2 )

2e(1− Ke
4 )

,

s =
p(e−a+d− Kde

2 )+q(e+c−b− Kce
2 )

2e(1− Ke
4 )

.
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Spherical Heronian friezes
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Main results

The entries along a traversing path determine the entire frieze.
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Main results

Theorem [W., 2025]

A sufficiently generic spherical Heronian frieze is periodic, has glide symmetry, and
exhibits a form of the Laurent phenomenon.
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Main results

Theorem [W., 2025]

Every generic spherical Heronian frieze comes from a polygon on the complexified
sphere. This polygon is unique.
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Thank you!

Metropolitan Museum of Art 4000 BCE
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What next?

One application of spherical Heronian friezes is to measuring and computing
distances on a globe.

San Francisco

Miami

Boston

Minneapolis

4352

2557 1809

20254160

Question

What if we have a point (or points) on a different sphere, like a satellite?
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