A positive dichotomy between frieze patterns and Diophantine geometry

Robin Zhang

Massachusetts Institute of Technology

Frises en algèbre, combinatoire et géométrie Frieze patterns in algebra, combinatorics and geometry

15 May 2025

- 1. Counting friezes
- 2. Between friezes and Diophantine geometry
- 3. Applications of frieze enumeration to Diophantine geometry
- 4. Generalizations

Talk convention:

A "frieze pattern" will be an array of positive integers with an SL_2 unimodular rule.

Talk convention:

A "frieze pattern" will be an array of positive integers with an SL_2 unimodular rule.

Dynkin diagram for E₈

Talk convention:

A "frieze pattern" will be an array of positive integers with an SL_2 unimodular rule.

Example of a frieze of type E_8

All diamonds $a \stackrel{b}{}_{c} d$ and $e \stackrel{f}{}_{g} i$ satisfy ad - bc = 1 and ei - fgh = 1.

Dynkin diagram for E₈

Talk convention:

A "frieze pattern" will be an array of positive integers with an SL_2 unimodular rule.

Example of a frieze of type E_8

Dynkin diagram for E₈

Question: Are there finitely many friezes for each Dynkin diagram?

All diamonds $a \int_{c}^{b} d$ and $e \int_{h}^{f} i$ satisfy ad - bc = 1 and ei - fgh = 1.

Talk convention:

A "frieze pattern" will be an array of positive integers with an SL_2 unimodular rule.

Example of a frieze of type E_8

All diamonds $a \int_{c}^{b} d$ and e g i satisfy ad - bc = 1 and ei - fgh = 1.

Dynkin diagram for E₈

Question: Are there finitely many friezes for each Dynkin diagram?

Talk convention:

A "frieze pattern" will be an array of positive integers with an SL_2 unimodular rule.

Dynkin diagram for E₈

Theorem (Morier-Genoud 2012)

If Δ is an infinite type, then there are infinitely many friezes of type Δ .

Question: Are there finitely many friezes for each Dynkin diagram?

Talk convention:

A "frieze pattern" will be an array of positive integers with an SL_2 unimodular rule. (or a homomorphism $\mathcal{A} \to \mathbb{Z}$ sending cluster variables to \mathbb{N})

Dynkin diagram for E₈

Theorem (Morier-Genoud 2012)

If Δ is an infinite type, then there are infinitely many friezes of type Δ .

Question: Are there finitely many friezes for each Dynkin diagram?

Talk convention:

A "frieze pattern" will be an array of positive integers with an SL_2 unimodular rule. (or a homomorphism $\mathcal{A} \to \mathbb{Z}$ sending cluster variables to \mathbb{N})

Dynkin diagram for E₈

Theorem (Morier-Genoud 2012)

If Δ is an infinite type, then there are infinitely many friezes of type Δ .

Idea: Fomin–Zelevinsky classification of cluster algebras + unitary friezes

Question: Are there finitely many friezes for each Dynkin diagram?

Talk convention:

A "frieze pattern" will be an array of positive integers with an SL_2 unimodular rule. (or a homomorphism $\mathcal{A} \to \mathbb{Z}$ sending cluster variables to \mathbb{N})

Dynkin diagram for E₈

Theorem (Morier-Genoud 2012)

If Δ is an infinite type, then there are infinitely many friezes of type Δ .

Idea: Fomin–Zelevinsky classification of cluster algebras + unitary friezes

Theorem (Gunawan–Muller 2022, Muller 2023

If Δ is a finite type, then there are finitely many friezes of type Δ .

Question: Are there finitely many friezes for each Dynkin diagram?

Talk convention:

A "frieze pattern" will be an array of positive integers with an SL_2 unimodular rule. (or a homomorphism $\mathcal{A} \to \mathbb{Z}$ sending cluster variables to \mathbb{N})

Dynkin diagram for E_8

Theorem (Morier-Genoud 2012)

If Δ is an infinite type, then there are infinitely many friezes of type Δ .

Idea: Fomin–Zelevinsky classification of cluster algebras + unitary friezes

Theorem (Gunawan–Muller 2022, Muller 2023)

If Δ is a finite type, then there are finitely many friezes of type Δ .

Gunawan-Muller: Non-effective proof using the geometry of cluster algebras

Muller: Effective proof using average logarithms of rows

Question: Are there finitely many friezes for each Dynkin diagram?

Question: How many friezes are there for each Dynkin type?

Question: How many friezes are there for each Dynkin type?

Answer:

Туре	Number of friezes	Proof
An	$\frac{1}{n+2}\binom{2n+2}{n+1}$	Conway–Coxeter 1973
Bn	$\sum_{m=1}^{\lfloor \sqrt{n+1} \rfloor} \binom{2n-m^2+1}{n}$	Fontaine–Plamondon 2016
Cn	$\binom{2n}{n}$	Fontaine–Plamondon 2016
Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$	Morier-Genoud–Ovsienko–Tabachnikov 2012 Fontaine–Plamondon 2016
E_6	868	Cuntz–Plamondon 2021
E7	?	
E ₈	?	
F_4	112	Cuntz-Plamondon 2021
G ₂	9	Fontaine–Plamondon 2016
Infinite	×	Morier-Genoud 2012

Question: How many friezes are there for each Dynkin type?

Answer:

Conjecture (Fontaine–Plamondon 2016)	Туре	Number of friezes	Proof
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	An	$\frac{1}{n+2}\binom{2n+2}{n+1}$	Conway–Coxeter 1973
	Bn	$\sum_{m=1}^{\lfloor \sqrt{n+1} \rfloor} \binom{2n-m^2+1}{n}$	Fontaine-Plamondon 2016
	Cn	$\binom{2n}{n}$	Fontaine–Plamondon 2016
	Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$	Morier-Genoud–Ovsienko–Tabachnikov 2012 Fontaine–Plamondon 2016
	E ₆	868	Cuntz–Plamondon 2021
	E7	?	
	E ₈	?	
	F4	112	Cuntz-Plamondon 2021
	G2	9	Fontaine–Plamondon 2016
	Infinite	×	Morier-Genoud 2012

Question: How many friezes are there for each Dynkin type?

Answer:

	Туре	Number of friezes	Proof
-8.	An	$\frac{1}{n+2}\binom{2n+2}{n+1}$	Conway–Coxeter 1973
m to searching of <i>E</i> 8-friezes)	Bn	$\sum_{m=1}^{\lfloor\sqrt{n+1}\rfloor} \binom{2n-m^2+1}{n}$	Fontaine–Plamondon 2016
0	Cn	$\binom{2n}{n}$	Fontaine–Plamondon 2016
	Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$	Morier-Genoud–Ovsienko–Tabachnikov 2012 Fontaine–Plamondon 2016
	E ₆	868	Cuntz-Plamondon 2021
	E7	?	
	E ₈	?	
	F4	112	Cuntz-Plamondon 2021
	G2	9	Fontaine–Plamondon 2016
	Infinite	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Morier-Genoud 2012

Conjecture (Fontaine–Plamondon 2016)

There are exactly 4400 and 26952 friezes of type E_7 and E_8 .

Muller 2023: effective bound essentially reduces E_8 problem to searching across $\approx 10^{50}$ -many 16-tuples (last rows of E_8 -friezes)

5/11

Question: How many friezes are there for each Dynkin type?

Answer:

Conjecture (Fontaine–Plamondon 2016)	Type	Number of friezes	
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	An	$\frac{1}{n+2}\binom{2n+2}{n+1}$	
Muller 2023: effective bound essentially reduces E_8 problem to searching across $\approx 10^{50}$ -many 16-tuples (last rows of E_8 -friezes)	Bn	$\sum_{m=1}^{\lfloor \sqrt{n+1} \rfloor} \binom{2n-m^2+1}{n}$	
	Cn	$\binom{2n}{n}$	
Theorem (Z. 2025)	Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$	Mori
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	E ₆	868	
	E7	4400	
	E ₈	26952	
	F4	112	
	G2	9	
	Infinite	~	

Type	Number of friezes	Proof
An	$\frac{1}{n+2}\binom{2n+2}{n+1}$	Conway–Coxeter 1973
B _n	$\sum_{m=1}^{\lfloor \sqrt{n+1} \rfloor} \binom{2n-m^2+1}{n}$	Fontaine–Plamondon 2016
Cn	$\binom{2n}{n}$	Fontaine–Plamondon 2016
Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$	Morier-Genoud–Ovsienko–Tabachnikov 2012 Fontaine–Plamondon 2016
E ₆	868	Cuntz–Plamondon 2021
E7	4400	Z. 2025
E ₈	26952	Z. 2025
F ₄	112	Cuntz–Plamondon 2021
G2	9	Fontaine–Plamondon 2016

Morier-Genoud 2012

Question: How many friezes are there for each Dynkin type?

Answer:

Proof

Conway-Coxeter 1973

Fontaine–Plamondon 2016 Fontaine–Plamondon 2016 Morier-Genoud–Ovsienko–Tabachnikov 2012

Fontaine-Plamondon 2016

Cuntz-Plamondon 2021

Z. 2025 Z. 2025 Cuntz–Plamondon 2021 Fontaine–Plamondon 2016 Morier-Genoud 2012

Conjecture (Fontaine–Plamondon 2016)	Type	Number of friezes
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	An	$\frac{1}{n+2}\binom{2n+2}{n+1}$
Muller 2023: effective bound essentially reduces E_8 problem to searching across $\approx 10^{50}$ -many 16-tuples (last rows of E_8 -friezes)	Bn	$\sum_{m=1}^{\lfloor \sqrt{n+1} \rfloor} \binom{2n-m^2+1}{n}$
	Cn	$\binom{2n}{n}$
Theorem (Z. 2025)	Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	E ₆	868
Idea: Transfer the problem to Diophantine geometry	E7	4400
	E ₈	26952
	F4	112
	G2	9
	Infinite	~

Question: How many friezes are there for each Dynkin type?

Answer:

Conjecture (Fontaine–Plamondon 2016)	Туре	Number of friez
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	An	$\frac{1}{n+2}\binom{2n+2}{n+1}$
Muller 2023: effective bound essentially reduces E_8 problem to searching across $\approx 10^{50}$ -many 16-tuples (last rows of E_8 -friezes)	Bn	$\sum_{m=1}^{\lfloor \sqrt{n+1} \rfloor} \binom{2n-m^2}{n}$
, , , , , , , , , , , , , , , , , , , ,	Cn	$\binom{2n}{n}$
Theorem (Z. 2025)	Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m}{n-n}$
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	E ₆	868
Idea: Transfer the problem to Diophantine geometry	E7	4400
Use an affine variety λ_{Δ} given by de Saint Germain–Huang–Lu 2023	E8	26952
	F4	112
	G2	9
	Infinite	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Туре	Number of friezes	Proof
An	$\frac{1}{n+2}\binom{2n+2}{n+1}$	Conway–Coxeter 1973
Bn	$\sum_{m=1}^{\lfloor \sqrt{n+1} \rfloor} \binom{2n-m^2+1}{n}$	Fontaine–Plamondon 2016
Cn	$\binom{2n}{n}$	Fontaine–Plamondon 2016
Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$	Morier-Genoud–Ovsienko–Tabachnikov 2012 Fontaine–Plamondon 2016
E ₆	868	Cuntz–Plamondon 2021
E7	4400	Z. 2025
E ₈	26952	Z. 2025
F ₄	112	Cuntz–Plamondon 2021
G2	9	Fontaine–Plamondon 2016
Infinite	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Morier-Genoud 2012

Question: How many friezes are there for each Dynkin type?

Answer:

 ∞

Proof

Conway-Coxeter 1973

Fontaine-Plamondon 2016

Fontaine-Plamondon 2016 Morier-Genoud-Ovsienko-Tabachnikov 2012

Fontaine-Plamondon 2016

Cuntz-Plamondon 2021

Z. 2025

Z. 2025

Cuntz-Plamondon 2021

Fontaine-Plamondon 2016

Morier-Genoud 2012

Conjecture (Fontaine–Plamondon 2016)	Type	Number of friezes
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	An	$\frac{1}{n+2}\binom{2n+2}{n+1}$
Muller 2023: effective bound essentially reduces E_8 problem to searching across $\approx 10^{50}$ -many 16-tuples (last rows of E_8 -friezes)	Bn	$\sum_{m=1}^{\lfloor \sqrt{n+1} \rfloor} \binom{2n-m^2+1}{n}$
	Cn	$\binom{2n}{n}$
Theorem (Z. 2025)	Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	E ₆	868
Idea: Transfer the problem to Diophantine geometry	E7	4400
Use an affine variety X_{Δ} given by de Saint Germain–Huang–Lu 2023 Modified Muller's bound: search $X_{E_8}(\mathbb{N})$ with coordinates < 10 ⁴¹		26952
	F4	112
	G2	9

Rohin	7hang	(MIT)	

Infinite

Question: How many friezes are there for each Dynkin type?

Answer:

Conjecture (Fontaine–Plamondon 2016)		
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .		
Muller 2023: effective bound essentially reduces E_8 problem to searching across $\approx 10^{50}$ -many 16-tuples (last rows of E_8 -friezes)	Bn	
	Cn	
Theorem (Z. 2025)	Dn	
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	E ₆	
Idea: Transfer the problem to Diophantine geometry	E7	
Use an affine variety X_{Δ} given by de Saint Germain–Huang–Lu 2023 Modified Muller's bound: search $X_{E_8}(\mathbb{N})$ with coordinates $< 10^{41}$	E ₈	
Reduce further using $\mathbb{Z}/m\mathbb{Z}$ -orbits in $X_{E_8}(\mathbb{N})$	F4	

Type	Number of friezes	Proof
An	$\frac{1}{n+2}\binom{2n+2}{n+1}$	Conway–Coxeter 1973
Bn	$\sum_{m=1}^{\lfloor \sqrt{n+1} \rfloor} \binom{2n-m^2+1}{n}$	Fontaine–Plamondon 2016
Cn	$\binom{2n}{n}$	Fontaine–Plamondon 2016
Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$	Morier-Genoud–Ovsienko–Tabachnikov 2012 Fontaine–Plamondon 2016
E ₆	868	Cuntz–Plamondon 2021
E7	4400	Z. 2025
E8	26952	Z. 2025
F ₄	112	Cuntz–Plamondon 2021
G2	9	Fontaine–Plamondon 2016
Infinite	œ	Morier-Genoud 2012

Question: How many friezes are there for each Dynkin type?

Answer:

Conjecture (Fontaine–Plamondon 2016)	Туре
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	An
Muller 2023: effective bound essentially reduces E_8 problem to searching across $\approx 10^{50}$ -many 16-tuples (last rows of E_8 -friezes)	Bn
	Cn
Theorem (Z. 2025)	Dn
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	E ₆
Idea: Transfer the problem to Diophantine geometry	E7
Modified Muller's bound: search $X_{E_8}(\mathbb{N})$ with coordinates $< 10^{41}$	E ₈
Reduce further using $\mathbb{Z}/m\mathbb{Z}$ -orbits in $X_{E_8}(\mathbb{N})$ Search for $X_{E_7}(\mathbb{N})$ with one coordinate $< 10^{10}$	F ₄
28(1)	

Type	Number of friezes	Proof
An	$\frac{1}{n+2}\binom{2n+2}{n+1}$	Conway–Coxeter 1973
Bn	$\sum_{m=1}^{\lfloor \sqrt{n+1} \rfloor} \binom{2n-m^2+1}{n}$	Fontaine–Plamondon 2016
Cn	$\binom{2n}{n}$	Fontaine–Plamondon 2016
Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$	Morier-Genoud–Ovsienko–Tabachnikov 2012 Fontaine–Plamondon 2016
E ₆	868	Cuntz–Plamondon 2021
E7	4400	Z. 2025
E ₈	26952	Z. 2025
F ₄	112	Cuntz–Plamondon 2021
G2	9	Fontaine–Plamondon 2016
Infinite	~	Morier-Genoud 2012

Question: How many friezes are there for each Dynkin type?

Answer:

Conjecture (Fontaine–Plamondon 2016)	Туре
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	An
Muller 2023: effective bound essentially reduces E_8 problem to searching across $\approx 10^{50}$ -many 16-tuples (last rows of E_8 -friezes)	Bn
	Cn
Theorem (Z. 2025)	Dn
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	E ₆
Idea: Transfer the problem to Diophantine geometry	E7
Modified Muller's bound: search $X_{E_8}(\mathbb{N})$ with coordinates $< 10^{41}$	E ₈
Reduce further using $\mathbb{Z}/m\mathbb{Z}$ -orbits in $X_{E_8}(\mathbb{N})$ Search for $X_{E_7}(\mathbb{N})$ with one coordinate $< 10^{10}$	F ₄
28(1)	

Type	Number of friezes	Proof
An	$\frac{1}{n+2}\binom{2n+2}{n+1}$	Conway–Coxeter 1973
Bn	$\sum_{m=1}^{\lfloor \sqrt{n+1} \rfloor} \binom{2n-m^2+1}{n}$	Fontaine–Plamondon 2016
Cn	$\binom{2n}{n}$	Fontaine–Plamondon 2016
Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$	Morier-Genoud–Ovsienko–Tabachnikov 2012 Fontaine–Plamondon 2016
E ₆	868	Cuntz–Plamondon 2021
E7	4400	Z. 2025
E ₈	26952	Z. 2025
F ₄	112	Cuntz–Plamondon 2021
G2	9	Fontaine–Plamondon 2016
Infinite	~	Morier-Genoud 2012

Question: How many friezes are there for each Dynkin type?

Answer:

	-
Conjecture (Fontaine–Plamondon 2016)	Туре
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	An
Muller 2023: effective bound essentially reduces E_8 problem to searching across $\approx 10^{50}$ -many 16-tuples (last rows of E_8 -friezes)	Bn
	Cn
Theorem (Z. 2025)	Dn
There are exactly 4400 and 26952 friezes of type E_7 and E_8 .	E ₆
Idea: Transfer the problem to Diophantine geometry	E7
Use an affine variety X_Δ given by de Saint Germain–Huang–Lu 2023 Modified Muller's bound: search $X_{E_8}(\mathbb{N})$ with coordinates $< 10^{41}$	E ₈
Reduce further using $\mathbb{Z}/m\mathbb{Z}$ -orbits in $X_{E_8}(\mathbb{N})$ Search for $X_{E_*}(\mathbb{N})$ with one coordinate $< 10^{10}$	F ₄

Corollary: new proof of frieze counts for all Dynkin types of rank n < 8

Туре	Number of friezes	Proof
An	$\frac{1}{n+2}\binom{2n+2}{n+1}$	Conway–Coxeter 1973
Bn	$\sum_{m=1}^{\lfloor \sqrt{n+1} \rfloor} \binom{2n-m^2+1}{n}$	Fontaine–Plamondon 2016
Cn	$\binom{2n}{n}$	Fontaine–Plamondon 2016
Dn	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$	Morier-Genoud–Ovsienko–Tabachnikov 2012 Fontaine–Plamondon 2016
E ₆	868	Cuntz–Plamondon 2021
E7	4400	Z. 2025
E ₈	26952	Z. 2025
F ₄	112	Cuntz–Plamondon 2021
G2	9	Fontaine–Plamondon 2016
Infinite	~	Morier-Genoud 2012

Definition (Cluster varieties)

An affine variety is of cluster algebra type \mathcal{A} if it is isomorphic to $\operatorname{Spec}(\mathcal{A})$ over \mathbb{C} .

(Fomin–Zelevinsky) classification of cluster algebras A (Killing–Cartan) classification of simple Lie groups G

ightarrow classification of generalized Cartan matrices $C = (c_{i,j})$

Definition (Lower bound frieze polynomials)

For each $i \in \{1, \ldots, n\}$, consider the polynomial in $\mathbb{Z}[x_1, \ldots, x_n, y_1, \ldots, y_n]$

$$f_{C,i} := x_i y_i - \prod_{j=1}^{i-1} x_j^{-c_{j,i}} - \prod_{j=i+1}^n x_j^{-c_{j,i}}.$$

Define the affine variety $X_C := \{f_{C,i} = 0\}$ to be their vanishing locus.

Definition (Cluster varieties)

An affine variety is of cluster algebra type \mathcal{A} if it is isomorphic to $\operatorname{Spec}(\mathcal{A})$ over \mathbb{C} .

(Fomin–Zelevinsky) classification of cluster algebras A (Killing–Cartan) classification of simple Lie groups *G*

ightarrow classification of generalized Cartan matrices $C = (c_{i,j})$

Definition (Lower bound frieze polynomials)

For each $i \in \{1, \ldots, n\}$, consider the polynomial in $\mathbb{Z}[x_1, \ldots, x_n, y_1, \ldots, y_n]$

$$f_{C,i} := x_i y_i - \prod_{j=1}^{i-1} x_j^{-c_{j,i}} - \prod_{j=i+1}^n x_j^{-c_{j,i}}.$$

Define the affine variety $X_C := \{f_{C,i} = 0\}$ to be their vanishing locus.

Theorem (de Saint Germain–Huang–Lu 2023)

An affine variety is of cluster algebra type \mathcal{A} if it is isomorphic to $\operatorname{Spec}(\mathcal{A})$ over \mathbb{C} .

Let Δ be a Dynkin type with generalized Cartan matrix C and cluster algebra \mathcal{A}_C with trivial coefficients. There is an isomorphism $\operatorname{Spec}(\mathcal{A}_C) \cong X_C$ over \mathbb{C} , and there is a bijection

 $\{\text{friezes of type } \Delta\} \longleftrightarrow X_C(\mathbb{N})$

Robin Zhang (MIT)

A positive dichotomy

Rational points, integral points, and positive integral points

The fundamental result in Diophantine geometry about rational points (conjectured by Poincaré 1901 and Mordell 1922):

Theorem (Mordell 1922, Weil 1929, Faltings 1983)

Let X be a smooth curve of genus g.

- If g = 0, then $\#X(\mathbb{Q}) = 0$ or ∞ .
- If g = 1, then $X(\mathbb{Q})$ is a finitely-generated abelian group.
- If $g \ge 2$, then $X(\mathbb{Q})$ is finite.

Rational points, integral points, and positive integral points

The fundamental result in Diophantine geometry about rational points (conjectured by Poincaré 1901 and Mordell 1922):

Theorem (Mordell 1922, Weil 1929, Faltings 1983)

Let X be a smooth curve of genus g.

- If g = 0, then $\#X(\mathbb{Q}) = 0$ or ∞ .
- If g = 1, then $X(\mathbb{Q})$ is a finitely-generated abelian group.
- If $g \ge 2$, then $X(\mathbb{Q})$ is finite.

The fundamental result in Diophantine geometry about integral points:

Theorem (Siegel 1929)

Let X be a smooth curve of genus g.

• If $g \ge 1$, then $X(\mathbb{Z})$ is finite.

Rational points, integral points, and positive integral points

The fundamental result in Diophantine geometry about rational points (conjectured by Poincaré 1901 and Mordell 1922):

Theorem (Mordell 1922, Weil 1929, Faltings 1983)

Let X be a smooth curve of genus g.

- If g = 0, then $\#X(\mathbb{Q}) = 0$ or ∞ .
- If g = 1, then $X(\mathbb{Q})$ is a finitely-generated abelian group.
- If $g \ge 2$, then $X(\mathbb{Q})$ is finite.

The fundamental result in Diophantine geometry about *integral* points:

Theorem (Siegel 1929)

Let X be a smooth curve of genus g.

• If $g \ge 1$, then $X(\mathbb{Z})$ is finite.

The classification of cluster algebras & enumeration of friezes yields a result about positive integral points:

Theorem (Z. 2025)

Let X be an affine variety of cluster algebra type Δ with smallest principal minor t_{Δ} .

- If $t_{\Delta} \leq 0$, then $\#X(\mathbb{N}) = \infty$.
- If $t_{\Delta} \geq 1$, then $X(\mathbb{N})$ is finite and precisely given by the frieze counts.

A positive dichotomy

Theorem (Mordell 1952)

For any $G \in \mathbb{Z}[x, y]$, there are infinitely many integer solutions (x, y, z) to the equation

Theorem (Mordell 1952

For any $G \in \mathbb{Z}[x, y]$, there are infinitely many integer solutions (x, y, z) to the equation

xyz = G(x, y).

• Proved by Mordell 1952 for $G(x, y) = x^3 + y^3 + 1$

Theorem (Mordell 1952)

For any $G \in \mathbb{Z}[x, y]$, there are infinitely many integer solutions (x, y, z) to the equation

- Proved by Mordell 1952 for $G(x, y) = x^3 + y^3 + 1$
- Quadratic counter-examples by Jacobsthal 1939, Barnes 1953, Mills 1954, Schinzel 2015

Theorem (Mordell 1952)

For any $G \in \mathbb{Z}[x, y]$, there are infinitely many integer solutions (x, y, z) to the equation

- Proved by Mordell 1952 for $G(x, y) = x^3 + y^3 + 1$
- Quadratic counter-examples by Jacobsthal 1939, Barnes 1953, Mills 1954, Schinzel 2015
- Some cases salvaged by Schinzel 2015, Schinzel 2018, and Kollár-Li 2024

"Theorem" (Mordell 1952)

For any $G \in \mathbb{Z}[x, y]$, there are infinitely many integer solutions (x, y, z) to the equation

- Proved by Mordell 1952 for $G(x, y) = x^3 + y^3 + 1$
- Quadratic counter-examples by Jacobsthal 1939, Barnes 1953, Mills 1954, Schinzel 2015
- Some cases salvaged by Schinzel 2015, Schinzel 2018, and Kollár-Li 2024

"Theorem" (Mordell 1952

For any $G \in \mathbb{Z}[x, y]$, there are infinitely many integer solutions (x, y, z) to the equation

xyz = G(x, y).

- Proved by Mordell 1952 for $G(x, y) = x^3 + y^3 + 1$
- Quadratic counter-examples by Jacobsthal 1939, Barnes 1953, Mills 1954, Schinzel 2015
- Some cases salvaged by Schinzel 2015, Schinzel 2018, and Kollár-Li 2024

Theorem (Z. 2025)

If $ab \ge 4$, then there are infinitely many *positive* integer solutions (x, y, z) to the equation

$$xyz = (x^a + 1)^b + y.$$

Furthermore if ab = 1, 2 or 3, then the number of positive integer solutions is 5, 6, or 9 respectively.

If abcd \geq 3, then there are infinitely many positive integer solutions (x, y, z, w) to the equation

$$xyzw = (x^{a} + 1)^{b}y + (x^{c} + 1)^{d}z$$

Robin Zhang (MIT)

Question: What about other number/finite/function fields, rings of integers, etc.?

Question: What about other number/finite/function fields, rings of integers, etc.?

Example over finite fields:

Theorem (Morier-Genoud 2021)

$$\#\{\text{Friezes of type } A_n \text{ over } \mathbb{F}_q\} = \begin{cases} \frac{q^{n+2}-1}{q^2-1} & \text{if } n \text{ is even} \\ \frac{(q^{\frac{n+3}{2}}-1)(q^{\frac{n+1}{2}}-1)}{q^2-1} & \text{if } n \text{ is odd and } \operatorname{char}(\mathbb{F}_q) > 2 \\ \frac{(q^{\frac{n+3}{2}}-1)(q^{\frac{n+1}{2}}-1)}{q^2-1} + q^{\frac{n+1}{2}} & \text{if } n \text{ is odd and } \operatorname{char}(\mathbb{F}_q) = 2 \end{cases}$$

Question: What about other number/finite/function fields, rings of integers, etc.?

Example over finite fields:

Theorem (Morier-Genoud 2021)

$$\#\{\text{Friezes of type } A_n \text{ over } \mathbb{F}_q\} = \begin{cases} \frac{q^{n+2}-1}{q^2-1} & \text{if } n \text{ is even} \\ \frac{(q^{\frac{n+3}{2}}-1)(q^{\frac{n+1}{2}}-1)}{q^2-1} & \text{if } n \text{ is odd and } \operatorname{char}(\mathbb{F}_q) > 2 \\ \frac{(q^{\frac{n+3}{2}}-1)(q^{\frac{n+1}{2}}-1)}{q^2-1} + q^{\frac{n+1}{2}} & \text{if } n \text{ is odd and } \operatorname{char}(\mathbb{F}_q) = 2 \end{cases}$$

• Short-van Son-Zabolotskii 2025: another proof using Farey complexes

Question: What about other number/finite/function fields, rings of integers, etc.?

Example over finite fields:

Theorem (Morier-Genoud 2021)

$$\#\{\text{Friezes of type } A_n \text{ over } \mathbb{F}_q\} = \begin{cases} \frac{q^{n+2}-1}{q^2-1} & \text{if } n \text{ is even} \\ \frac{(q^{\frac{n+3}{2}}-1)(q^{\frac{n+1}{2}}-1)}{q^2-1} & \text{if } n \text{ is odd and } \operatorname{char}(\mathbb{F}_q) > 2 \\ \frac{(q^{\frac{n+3}{2}}-1)(q^{\frac{n+1}{2}}-1)}{q^2-1} + q^{\frac{n+1}{2}} & \text{if } n \text{ is odd and } \operatorname{char}(\mathbb{F}_q) = 2 \end{cases}$$

- Short-van Son-Zabolotskii 2025: another proof using Farey complexes
- Z. in-progress: another proof using $\#X_{A_n}(\mathbb{F}_q)$ counts

Question: What about other number/finite/function fields, rings of integers, etc.?

Example over finite fields:

Theorem (Morier-Genoud 2021)

$$\#\{\text{Friezes of type } A_n \text{ over } \mathbb{F}_q\} = \begin{cases} \frac{q^{n+2}-1}{q^2-1} & \text{if } n \text{ is even} \\ \frac{(q^{\frac{n+3}{2}}-1)(q^{\frac{n+1}{2}}-1)}{q^2-1} & \text{if } n \text{ is odd and } \operatorname{char}(\mathbb{F}_q) > 2 \\ \frac{(q^{\frac{n+3}{2}}-1)(q^{\frac{n+1}{2}}-1)}{q^2-1} + q^{\frac{n+1}{2}} & \text{if } n \text{ is odd and } \operatorname{char}(\mathbb{F}_q) = 2 \end{cases}$$

- Short-van Son-Zabolotskii 2025: another proof using Farey complexes
- Z. in-progress: another proof using $\#X_{A_n}(\mathbb{F}_q)$ counts

Question: Can this generalize to SL_k friezes?

Question: What about other number/finite/function fields, rings of integers, etc.?

Example over finite fields:

Theorem (Morier-Genoud 2021)

$$\#\{\text{Friezes of type } A_n \text{ over } \mathbb{F}_q\} = \begin{cases} \frac{q^{n+2}-1}{q^2-1} & \text{if } n \text{ is even} \\ \frac{(q^{\frac{n+3}{2}}-1)(q^{\frac{n+1}{2}}-1)}{q^2-1} & \text{if } n \text{ is odd and } \operatorname{char}(\mathbb{F}_q) > 2 \\ \frac{(q^{\frac{n+3}{2}}-1)(q^{\frac{n+1}{2}}-1)}{q^2-1} + q^{\frac{n+1}{2}} & \text{if } n \text{ is odd and } \operatorname{char}(\mathbb{F}_q) = 2 \end{cases}$$

- Short-van Son-Zabolotskii 2025: another proof using Farey complexes
- Z. in-progress: another proof using $\#X_{A_n}(\mathbb{F}_q)$ counts

Question: Can this generalize to SL_k friezes?

Question: Are there other interesting varieties containing / contained in cluster varieties?

Question: What about other number/finite/function fields, rings of integers, etc.?

Example over finite fields:

Theorem (Morier-Genoud 2021)

$$\#\{\text{Friezes of type } A_n \text{ over } \mathbb{F}_q\} = \begin{cases} \frac{q^{n+2}-1}{q^2-1} & \text{if } n \text{ is even} \\ \frac{(q^{\frac{n+3}{2}}-1)(q^{\frac{n+1}{2}}-1)}{q^2-1} & \text{if } n \text{ is odd and } \operatorname{char}(\mathbb{F}_q) > 2 \\ \frac{(q^{\frac{n+3}{2}}-1)(q^{\frac{n+1}{2}}-1)}{q^2-1} + q^{\frac{n+1}{2}} & \text{if } n \text{ is odd and } \operatorname{char}(\mathbb{F}_q) = 2 \end{cases}$$

- Short-van Son-Zabolotskii 2025: another proof using Farey complexes
- Z. in-progress: another proof using $\#X_{A_n}(\mathbb{F}_q)$ counts

Question: Can this generalize to SL_k friezes?

Question: Are there other interesting varieties containing / contained in cluster varieties?

Example with more general cluster algebras:

• de Saint Germain-Z. in-progress: more Mordell-Schinzel equations