Gallery of Farey graphs

Wild SLo-tilings

Andrei Zabolotskii

26 March 2024

With lan Short and Matty van Son
EPSRC EP/W002817/1 & EP/W524098/1

The Open
University

1/44



Gallery of Farey graphs



Farey complexes

The Farey complex over integers is a graph that has
vertices: equiv. classes {% ta,beZ, a,b coprime}/ ~, with ¢ ~ =¢;
edges: from 7 to 5 whenever ad — be = £1.

see arXiv:2312.12953 and talks by lan and Matty
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Farey complexes

For ring R and group of units U c R*, Farey complex g 17 has
vertices: equiv. classes {% a,beR, aR+bR = R}/ ~E N T Vel
edges: from 7 to 5 whenever ad —bce U.
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Farey complexes

For ring R and group of units U c R*, Farey complex g 17 has
vertices: equiv. classes {% a,beR, aR+bR = R}/ ~E N T Vel
edges: from 7 to 5 whenever ad —bce U.
Define 7r = g (.1}
Example: the Farey graph over integers %y,

see arXiv:2312.12953 and talks by lan and Matty
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Farey complexes: application

pairs of bi-infinite tame SLo-tilings
SL2(R)\{ paths in Fru } — (Ux U)\{ over R }

SLQ(R)\{ paths in g 7 from } - U \{tame friezes over R}

any § to 7, ueR" with first row of 1s
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Gallery of Farey graphs

® Zz/nz and uniqueness of lifting
* I, FK Kkx, and symmetries of Farey complex
. ﬁod70§ and tessellations of hyperbolic space

by Jorge Royan, commons.wikimedia.org/wiki/File:0xford - Pitt_Rivers Museum_-_0269.jpg, CCBY-SA 3.0
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Gallery of Farey graphs: %7 and
uniqueness of lifting



Z7/nz and uniqueness of lifting: Farey complexes for integers modulo N

Fyy7z (genus 3)

genus(N) =1+ ﬁ\’z(x -6) 1 ('l - 1/1)2)

pIN 7/44



Fz/nz and uniqueness of lifting

A path in Fz Ny lifts to a closed path in F7 (and defines an
integer frieze) when it is closed and strongly contractible.
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A path in Fz Ny lifts to a closed path in F7 (and defines an
integer frieze) when it is closed and strongly contractible.

For a non-self-intersecting path, it means that it bounds a disk
with no internal vertices.
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Fz/nz and uniqueness of lifting

A path in Fz Ny lifts to a closed path in F7 (and defines an
integer frieze) when it is closed and strongly contractible.

For a non-self-intersecting path, it means that it bounds a disk
with no internal vertices. (The lifted frieze is then nonzero.)
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Fz/nz and uniqueness of lifting

A path in Fz Ny lifts to a closed path in F7 (and defines an
integer frieze) when it is closed and strongly contractible.

For a non-self-intersecting path, it means that it bounds a disk
with no internal vertices. (The lifted frieze is then nonzero.)

The lifting of a path can be unique up to
SL2(Z) only if it has no self-intersections.
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Fz/nz and uniqueness of lifting

Can a non-self-intersecting path in .77,y be lifted to
different paths in .%z, up to the action of SL2(Z) transformations?
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different paths in .%z, up to the action of SL2(Z) transformations?
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= be a Hamiltonian cycle on a sphere.
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Fz/nz and uniqueness of lifting

Can a non-self-intersecting path in .77,y be lifted to

different paths in .%z, up to the action of SL2(Z) transformations?
It has to bound two disks with no internal vertices

= be a Hamiltonian cycle on a sphere.
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Fz/nz and uniqueness of lifting

Can a non-self-intersecting path in .77,y be lifted to

different paths in .%z, up to the action of SL2(Z) transformations?
It has to bound two disks with no internal vertices

= be a Hamiltonian cycle on a sphere.

1
0
.' 2
1
1
3
Tz

These two are related by reflection + basepoint shift.
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~z and uniqueness of lifting

Can a non-self-intersecting path in .77,y be lifted to

different paths in .%z, up to the action of SL2(Z) transformations?
It has to bound two disks with no internal vertices

= be a Hamiltonian cycle on a sphere.

1

g 0
m1
m2
m3
} m5

2

1

Tz

These two are related by reflection + basepoint shift.

Can a path be lifted to two really different paths? o as



Fz/nz and uniqueness of lifting
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Fz/nz and uniqueness of lifting
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Fz/nz and uniqueness of lifting

There are 17 Hamiltonian cycles on an icosahedron,
9 of which separate the icosahedron into two differently

triangulated disks.
(Sainte-Lagué, 1937)
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Fz/nz and uniqueness of lifting

There are 17 Hamiltonian cycles on an icosahedron,

9 of which separate the icosahedron into two differently
triangulated disks.
(Sainte-Lagué, 1937
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Zz/nz and uniqueness of lifting: conclusion

Theorem. Suppose 7 is a path in %,y Consider its lift(s) to
closed path(s) in %z, up to the action of SLa(Z).

e If N =5 and ~ is one of the 9 distinguished Hamiltonian
cycles, then « has 2 inequivalent* lifts;

else, if N =2,3,4,5 and +y is a Hamiltonian cycle, then + has
2 equivalent lifts;

else, if v is non-self-intersecting, then  has at most 1 lift;

otherwise, v has either no or infinitely many lifts.

*under reflection with direction change and a basepoint shift
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Gallery of Farey graphs: .y, %k =, and
symmetries of Farey complexes



Symmetries of Farey complexes

® Any .Zry has symmetries represented by the special linear
group SLa(R). SLa-tilings are invariant w.r.t. its action.
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Symmetries of Farey complexes

® Any .Zry has symmetries represented by the special linear
group SLa(R). SLa-tilings are invariant w.r.t. its action.
® Moreover, any .#g yy has symmetries coming from the general
semilinear group I'La(R) = GL2(R) x Aut(R).
Example: let R=F,={0,1,a,b} be a field, U = {1}.

Fr, is embedded into projective plane
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Symmetries of Farey complexes

® Any .Zry has symmetries represented by the special linear
group SLa(R). SLa-tilings are invariant w.r.t. its action.
® Moreover, any .#g yy has symmetries coming from the general
semilinear group I'La(R) = GL2(R) x Aut(R).
Example: let R =T, ={0,1,a,b} be a field, U = {1}. Frobenius
automorphism a <> b acts on Fp,:

Fr, is embedded into projective plane in two different ways
14/ 44



Symmetries of Farey complexes

® Any Zgy has symmetries represented by the special linear
group SLy(R). SLo-tilings are invariant w.r.t. its action.

® Moreover, any .#r 7 has symmetries coming from the general
semilinear group I'La(R) = GLa(R) x Aut(R).
® Some Farey complexes have more symmetries.

® For a field K, Fk g~ is the projective line over K.
® |t is a complete graph, its symmetry group (collineation group)
is the symmetric group.
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Gallery of Farey graphs: Lg%d?og and
tessellations of hyperbolic space



Farey graph over integers is a hyperbolic tessellation

Tessellation of the hyperbolic plane by ideal triangles

17 /44



Farey graph over Gaussian integers

Consider Gaussian integers R = Z[i], U = Z[i]* = {1, +i}, and the
Farey graph Z g .
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Farey graph over Gaussian integers

Consider Gaussian integers R = Z[i], U = Z[i]* = {1, +i}, and the
Farey graph Z g .

Vertices ‘;:;3 can be identified with Gaussian rationals Q(z) c C.
Edges can be drawn in the upper half-space understood as the
hyperbolic space H?, as hyperbolic lines.

Set of edges is the orbit of the edge 1/0 to 0/1 under SLa(Z[i]).

It is the 1-skeleton of the tessellation of H? by ideal octahedra.

(see e.g. papers by M. Hockman for the relation to continued fractions)
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Farey graph over Eisenstein integers

Fry with R=Z[o] with ¢ = ¢/™3, U = Z[o]* = {£1, +0, 202}

(A. Felikson, O. Karpenkov, Kh. Serhiyenko, P. Tumarkin, arXiv:2306.17118)
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Farey graph over Eisenstein integers

Fry with R=Z[o] with ¢ = ¢/™3, U = Z[o]* = {£1, +0, 202}
Again, edges drawn in H? as the orbit of the edge 1/0 to 0/1 under
SLo(Z[o]), or PSLy(Z[o]).

(A. Felikson, O. Karpenkov, Kh. Serhiyenko, P. Tumarkin, arXiv:2306.17118)
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Farey graph over Eisenstein integers

Fry with R=Z[o] with ¢ = ¢/™3, U = Z[o]* = {£1, +0, 202}
Again, edges drawn in H? as the orbit of the edge 1/0 to 0/1 under
SLo(Z[o]), or PSLy(Z[o]).

It is the 1-skeleton of the tessellation of H? by ideal tetrahedra.

1

Symmetry group is PI'Ly(Z[o]) = PGL2(Z[o]) » (c.c.).

(A. Felikson, O. Karpenkov, Kh. Serhiyenko, P. Tumarkin, arXiv:2306.17118)
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Farey graphs over O4

More generally, let R be the ring of integers of the imaginary
quadratic field Q(\/—-d), denoted Og4, and U = O
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Farey graphs over O4

More generally, let R be the ring of integers of the imaginary
quadratic field Q(v/~d), denoted Oy, and U = O3,
Letd=1,2,3,7,11:

01 =Z[1],

O3 =Z[o],

Oy = Z[iV/?2],

O7 = Z[(1 +iv7) /2],

O11 = Z[(1 +i/11)/2].
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Farey graphs over O4

More generally, let R be the ring of integers of the imaginary
quadratic field Q(v/~d), denoted Oy, and U = O3,
Letd=1,2,3,7,11:
01 = Z[i],
O3 =Z[o],
Oy = Z[iV/?2],
O7 = Z[(1 +iv7) /2],

e 011 = Z[(1+i/11)/2].
The Farey graph %, o is again the orbit of 1/0—0/1 under the
Bianchi group PSL2(Oy).
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Farey graphs over O4

ﬁod,o; are again tessellations of H? by ideal polyhedra.

1+iv2

A cell of '

P
32(91,(1‘) F 0y, {£1} 3037(0) 3’7@7)&1} 90117{11}

For d=1,2,3,7,11, see Hatcher, J. London Math. Soc. (1983).
For other d, tessellations also exist but their edges
are not the same as Zp, ox.

See Vulakh, Cremona, and Yasaki for different generalisations.
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Wild SLo-tilings



Farey surfaces: combinatorial model for
wild integer SLo-tilings



Wild SLs-tilings

An SLo-tiling is tame if every 3 x 3 block has determinant O.
Otherwise, it is wild.
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Wild SLs-tilings

An SLo-tiling is tame if every 3 x 3 block has determinant O.
Otherwise, it is wild.

01 0-10120

101 0-10 1
0-1019-10
1 0-101 0 -1
01 0-1010

a b ¢
In an SLo-tiling, e-det|d e f]=0.
g h 1
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Wild SLs-tilings

An SLo-tiling is tame if every 3 x 3 block has determinant O.
Otherwise, it is wild.

01 0-10120

101 0-10 1
0-1019-10
1 0-101 0 -1
01 0-1010

a b ¢
In an SLo-tiling, e-det|d e f]=0.
g h 1

Wild entries are always Os over Z (generally, zero divisors).
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(© Gaga Communications / Dragon Pictures / Takeuchi Entertainment
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Wild SLs-tilings

Tame SLo-tilings correspond to pairs of paths in the Farey graph,
what about wild ones?
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Wild SLs-tilings

Tame SLo-tilings correspond to pairs of paths in the Farey graph,
what about wild ones?

Idea: a 2 x 2 block in a wild SLa-tiling is indistinguishable from a
2 x 2 block in a tame SLo-tiling.
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Farey edges

Definition. A Farey edge is a vertex-labelled graph consisting of a
single edge joining vertices with labels (i, (%)) and (i + 1, (‘g,’ ).
where i € Z (to be referred as a coordinate) and a,b,a’,b" are

!
integers such that det (Z Z,) =1.

Example:

(0,(9)) — (1,(Z))

28 /44



Definition. A Farey face is a 2-dimensional cell complex consisting
of a single 4-gonal cell, which is a direct product of two Farey
edges.

Example:

( ’(%))7( 7(%)) x (87(_01 )7(97(_01)) =

(( 78)7(%_01))7(( ’9)’(%_01))

(( 78)7(2_01 )7(( af))7(g—01 )

29 /44



Farey surfaces

Definition. A Farey surface is a 2-dimensional cell complex
consisting of Farey faces such that

® every edge belongs to exactly two faces, and

e for any two vertices labelled ((7,7),A) and ((i,7), B),
A+ B and det A = det B.

This provides a well-defined way to turn a Farey surface into

a bi-infinite matrix: m; ; = det A, where ((4,4), A) is a vertex in
the Farey surface.

That bi-infinite matrix is always an SLa-tiling.
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Tame SLo-tilings come from unbranched Farey surfaces
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All SLa-tilings come from Farey surfaces

The group SLy(Z) acts on Farey surfaces by left multiplication by
matrix labels.

Computing determinants of the matrix labels always gives an
SLo-tiling invariant under that action.
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All SLa-tilings come from Farey surfaces

The group SLy(Z) acts on Farey surfaces by left multiplication by
matrix labels.

Computing determinants of the matrix labels always gives an
SLo-tiling invariant under that action.

Theorem. There is a bijection between
e the set of Farey surfaces, modulo SLo(Z),
® and the set of SLo-tilings.
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Zeros in tilings

What specifically happens around a 0 in an SLa-tiling?
Whenever m; ; = 0,

I I ’
mMi-1,5-1 Mi-1;5 M4-1,5+1 U +v 1 uw+wv + W j
MiJ’ = mg j-1 m j Mg j+1 =+ -1 0 1
/
Mitl,j-1 Mirlj  Mi+l g+l —u-v -1 u-v

for some u,u’,v,v",w; j and det M; j = +w; ;.

01 0-101 0
10 1 0-10 1

0-1019-10
1 0-101 0 -1-
01 0-101 0
.10 1 0-10 1
0-101 0-10
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Zeros in tilings

A portion of a Farey surface which is mapped to M; ; with m; ; =0
and det M; ; = 0 looks like this, up to the action of SLy(Z):

(G150, (1 %)) — (6. (M%) — (G0, (1 2Y))
So S3
(G-, (52)) ——— (@) (5 5) ——— (G, (32Y))
(Gr15-0), (Y1) —— (1), (3 5)) —— (Gergon), (4 24))
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Wild zeros in tilings

Now let det M; ; = w; ; # 0. A few Farey faces adjacent to a vertex
with coordinates (i, ) look like this (i.e. same as above), up to the
action of SLy(Z)...

(G-15-1, (4 2)) — (19, (4 %))

So

(50, (§ ) — (@), (§9)) — (Ga+0, (§2Y))
Sl 52

(G+1,5-), (Y £V)) (G+19), (1 3%1)) — (G150, (¥ %9))

35/44



Wild zeros in tilings

...and more faces look like this (S2 is same as above, faces Sy and
So are different sheets of the same covering):

(- (g O )) — (- (e al)) —— (L (M )
S s,
(. 08) —— @, G5 —— (. (5%))
>
(o)) ———(-.(v2y))
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What Farey surfaces look like

A Farey surface around a wild

zero looks like the Riemann
A Farey surface of a tame surface of Log(z):

SLo-tiling is the plane:
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What Farey surfaces look like
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Very wild SLo-tilings



A maximally wild integer SLa-tiling

How tightly can we pack wild zeros in an SLa-tiling?
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A maximally wild integer SLa-tiling

How tightly can we pack wild zeros in an SLo-tiling? 00

0 (wild)
m

-1
[0
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A maximally wild integer SLa-tiling

How tightly can we pack wild zeros in an SLo-tiling? 00

M 0 (wild)

m1 W tame

m-1 wild
*0

40% of entries are wild. Can we do better?
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A maximally wild integer SLa-tiling

How tightly can we pack wild zeros in an SLo-tiling? 00

M 0 (wild)

m1 W tame

m-1 wild
*0

40% of entries are wild. Can we do better?

Yes, but not over an integral domain!

40/ 44



A maximally wild SLs-tiling: how to construct it

Generally, in an SLo-tiling,

a b c
det|d e fl=(a+c+g+i)+ (cg—ai)e.
g h i
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A maximally wild SLs-tiling: how to construct it

Generally, in an SLo-tiling,

a b c

det|d e fl=(a+c+g+i)+ (cg—ai)e.
g h i

Repeat

3 2 -3 -2
4 3 -4 -3
-3 -2 3 2
-4 -3 4 3
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A maximally wild SLs-tiling: how to construct it

Generally, in an SLo-tiling,

a b c
det|d e fl=(a+c+g+i)+ (cg—ai)e.
g h 1

Repeat and take entries modulo N =22.32 =36

3 2 -3 -2
4 3 ~4 -3
N/3-3 N/2-2 3 2

N/2-4 N/3-3 4 3
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A maximally wild SLs-tiling

The SLo-tiling is over Z/36Z. Repeat:

3 2 33 34
4 3 3233 ...
9 16 3 2
14 9 4 3
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A maximally wild SLs-tiling

The SLo-tiling is over Z/36Z. Repeat:

3 2 33 34
4 3 3233 ...
9 16 3 2
14 9 4 3

All entries of this SLa-tiling are wild, 3 x 3 determinants being

12 18 12 18
18 12 18 12 ...
12 18 12 18
18 12 18 12

42/44






A closed, non-self-intersecting path in the Farey graph
over Z/NZ lifts to Z essentially non-uniquely when N =5
and it is one of 9 distinguished Hamiltonian cycles.

Farey graphs arise e.g. from Bianchi groups

associated with Q(v/~d) for d=1,2,3,7,11.

Farey surface is a combinatorial model for any SLo-tiling.
There is an SLo-tiling with all entries wild.

Thank you!
Questions, please.

SL2tilings.github.io
mathstodon.xyz/PSL2Z
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