Gallery of Farey graphs, and
 Wild SL_{2}-tilings

Andrei Zabolotskii

26 March 2024

Gallery of Farey graphs

Farey complexes

The Farey complex over integers is a graph that has vertices: equiv. classes $\left\{\frac{a}{b}: a, b \in \mathbb{Z}, a, b\right.$ coprime $\} / \sim$, with $\frac{a}{b} \sim \frac{-a}{-b}$; edges: from $\frac{a}{b}$ to $\frac{c}{d}$ whenever $a d-b c= \pm 1$.

see arXiv:2312.12953 and talks by lan and Matty

Farey complexes

For ring R and group of units $U \subset R^{\times}$, Farey complex $\mathscr{F}_{R, U}$ has vertices: equiv. classes $\left\{\frac{a}{b}: a, b \in R, a R+b R=R\right\} / \sim, \quad \frac{a}{b} \sim \frac{u a}{u b} \forall u \in U$; edges: from $\frac{a}{b}$ to $\frac{c}{d}$ whenever $a d-b c \in U$.

see arXiv:2312.12953 and talks by lan and Matty

Farey complexes

For ring R and group of units $U \subset R^{\times}$, Farey complex $\mathscr{F}_{R, U}$ has vertices: equiv. classes $\left\{\frac{a}{b}: a, b \in R, a R+b R=R\right\} / \sim, \quad \frac{a}{b} \sim \frac{u a}{u b} \forall u \in U$; edges: from $\frac{a}{b}$ to $\frac{c}{d}$ whenever $a d-b c \in U$.

Define $\mathscr{F}_{R}=\mathscr{F}_{R,\{ \pm 1\}}$.
Example: the Farey graph over integers $\mathscr{F}_{\mathbb{Z}}$

see arXiv:2312.12953 and talks by lan and Matty

Farey complexes: application

$\mathrm{SL}_{2}(R) \backslash\left\{\begin{array}{c}\text { pairs of bi-infinite } \\ \text { paths in } \mathscr{F}_{R, U}\end{array}\right\} \leftrightarrow(U \times U) \backslash\left\{\begin{array}{c}\text { tame } \mathrm{SL}_{2} \text {-tilings } \\ \text { over } R\end{array}\right\}$
$\mathrm{SL}_{2}(R) \backslash\left\{\begin{array}{l}\text { paths in } \mathscr{F}_{R, U} \text { from } \\ \text { any } \frac{a}{b} \text { to } \frac{u a}{u b}, u \in R^{\times}\end{array}\right\} \leftrightarrow U \backslash\left\{\begin{array}{l}\text { tame friezes over } R \\ \text { with first row of 1s }\end{array}\right\}$

Gallery of Farey graphs

- $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting
- $\mathscr{F}_{\mathbb{F}_{4}}, \mathscr{F}_{K, K^{\times}}$, and symmetries of Farey complex
- $\mathscr{F}_{\mathcal{O}_{d}, \mathcal{O}_{d}^{\times}}$and tessellations of hyperbolic space

by Jorge Royan, commons.wikimedia.org/wiki/File:Oxford_-_Pitt_Rivers_Museum_-_0269.jpg, CC BY-SA 3.0

Gallery of Farey graphs: $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and
uniqueness of lifting

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting: Farey complexes for integers modulo N

$\mathscr{F}_{\mathbb{Z} / 5 \mathbb{Z}}$

$\mathscr{F}_{\mathbb{Z} / \mathbb{Z}}($ genus 3)

$$
\operatorname{genus}(N)=1+\frac{1}{24} N^{2}(N-6) \prod_{p \mid N}\left(1-1 / p^{2}\right)
$$

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

A path in $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ lifts to a closed path in $\mathscr{F}_{\mathbb{Z}}$ (and defines an integer frieze) when it is closed and strongly contractible.

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

A path in $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ lifts to a closed path in $\mathscr{F}_{\mathbb{Z}}$ (and defines an integer frieze) when it is closed and strongly contractible.
For a non-self-intersecting path, it means that it bounds a disk with no internal vertices.

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

A path in $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ lifts to a closed path in $\mathscr{F}_{\mathbb{Z}}$ (and defines an integer frieze) when it is closed and strongly contractible. For a non-self-intersecting path, it means that it bounds a disk with no internal vertices.

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

A path in $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ lifts to a closed path in $\mathscr{F}_{\mathbb{Z}}$ (and defines an integer frieze) when it is closed and strongly contractible. For a non-self-intersecting path, it means that it bounds a disk with no internal vertices.

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

A path in $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ lifts to a closed path in $\mathscr{F}_{\mathbb{Z}}$ (and defines an integer frieze) when it is closed and strongly contractible. For a non-self-intersecting path, it means that it bounds a disk with no internal vertices. (The lifted frieze is then nonzero.)

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

A path in $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ lifts to a closed path in $\mathscr{F}_{\mathbb{Z}}$ (and defines an integer frieze) when it is closed and strongly contractible.
For a non-self-intersecting path, it means that it bounds a disk with no internal vertices. (The lifted frieze is then nonzero.)

The lifting of a path can be unique up to $\mathrm{SL}_{2}(\mathbb{Z})$ only if it has no self-intersections.

$8 / 44$

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

Can a non-self-intersecting path in $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ be lifted to different paths in $\mathscr{F}_{\mathbb{Z}}$, up to the action of $\mathrm{SL}_{2}(\mathbb{Z})$ transformations?

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

Can a non-self-intersecting path in $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ be lifted to different paths in $\mathscr{F}_{\mathbb{Z}}$, up to the action of $\mathrm{SL}_{2}(\mathbb{Z})$ transformations?
It has to bound two disks with no internal vertices
$=$ be a Hamiltonian cycle on a sphere.

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

Can a non-self-intersecting path in $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ be lifted to different paths in $\mathscr{F}_{\mathbb{Z}}$, up to the action of $\mathrm{SL}_{2}(\mathbb{Z})$ transformations?
It has to bound two disks with no internal vertices
$=$ be a Hamiltonian cycle on a sphere.

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

Can a non-self-intersecting path in $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ be lifted to different paths in $\mathscr{F}_{\mathbb{Z}}$, up to the action of $\mathrm{SL}_{2}(\mathbb{Z})$ transformations? It has to bound two disks with no internal vertices $=$ be a Hamiltonian cycle on a sphere.

These two are related by reflection + basepoint shift.

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

Can a non-self-intersecting path in $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ be lifted to different paths in $\mathscr{F}_{\mathbb{Z}}$, up to the action of $\mathrm{SL}_{2}(\mathbb{Z})$ transformations? It has to bound two disks with no internal vertices = be a Hamiltonian cycle on a sphere.

These two are related by reflection + basepoint shift.

Can a path be lifted to two really different paths?

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

There are 17 Hamiltonian cycles on an icosahedron, 9 of which separate the icosahedron into two differently triangulated disks.
(Sainte-Laguë, 1937)

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting

There are 17 Hamiltonian cycles on an icosahedron, 9 of which separate the icosahedron into two differently triangulated disks.
(Sainte-Laguë, 1937)

sis	∞ 8 T	Ans θ	$\underset{\sim}{\infty}$	ω $\stackrel{\Delta}{\Delta}^{\Lambda^{\prime}}$
∞	Δ	An	Δ	
\Perp	∞	$\otimes \otimes$	\Leftrightarrow	
${ }^{*}$			м	

(

$\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$ and uniqueness of lifting: conclusion

Theorem. Suppose γ is a path in $\mathscr{F}_{\mathbb{Z} / N \mathbb{Z}}$. Consider its lift(s) to closed path(s) in $\mathscr{F}_{\mathbb{Z}}$, up to the action of $\mathrm{SL}_{2}(\mathbb{Z})$.

- If $N=5$ and γ is one of the 9 distinguished Hamiltonian cycles, then γ has 2 inequivalent* lifts;
- else, if $N=2,3,4,5$ and γ is a Hamiltonian cycle, then γ has 2 equivalent lifts;
- else, if γ is non-self-intersecting, then γ has at most 1 lift;
- otherwise, γ has either no or infinitely many lifts.

[^0]
Gallery of Farey graphs: $\mathscr{F}_{\mathbb{F}_{4}}, \mathscr{F}_{K, K^{\times}}$, and symmetries of Farey complexes

Symmetries of Farey complexes

- Any $\mathscr{F}_{R, U}$ has symmetries represented by the special linear group $\mathrm{SL}_{2}(R)$. SL_{2}-tilings are invariant w.r.t. its action.

Symmetries of Farey complexes

- Any $\mathscr{F}_{R, U}$ has symmetries represented by the special linear group $\mathrm{SL}_{2}(R)$. SL_{2}-tilings are invariant w.r.t. its action.
- Moreover, any $\mathscr{F}_{R, U}$ has symmetries coming from the general semilinear group $\Gamma \mathrm{L}_{2}(R)=\mathrm{GL}_{2}(R) \rtimes \operatorname{Aut}(R)$.

Symmetries of Farey complexes

- Any $\mathscr{F}_{R, U}$ has symmetries represented by the special linear group $\mathrm{SL}_{2}(R)$. SL_{2}-tilings are invariant w.r.t. its action.
- Moreover, any $\mathscr{F}_{R, U}$ has symmetries coming from the general semilinear group $\Gamma \mathrm{L}_{2}(R)=\mathrm{GL}_{2}(R) \rtimes \operatorname{Aut}(R)$.
Example: let $R=\mathbb{F}_{4}=\{0,1, a, b\}$ be a field, $U=\{1\}$.

$\mathscr{F}_{\mathbb{F}_{4}}$ is embedded into projective plane

Symmetries of Farey complexes

- Any $\mathscr{F}_{R, U}$ has symmetries represented by the special linear group $\mathrm{SL}_{2}(R) . \mathrm{SL}_{2}$-tilings are invariant w.r.t. its action.
- Moreover, any $\mathscr{F}_{R, U}$ has symmetries coming from the general semilinear group $\Gamma \mathrm{L}_{2}(R)=\mathrm{GL}_{2}(R) \rtimes \operatorname{Aut}(R)$.
Example: let $R=\mathbb{F}_{4}=\{0,1, a, b\}$ be a field, $U=\{1\}$. Frobenius automorphism $a \leftrightarrow b$ acts on $\mathscr{F}_{\mathbb{F}_{4}}$:

$\mathscr{F}_{\mathbb{F}_{4}}$ is embedded into projective plane in two different ways

Symmetries of Farey complexes

- Any $\mathscr{F}_{R, U}$ has symmetries represented by the special linear group $\mathrm{SL}_{2}(R) . \mathrm{SL}_{2}$-tilings are invariant w.r.t. its action.
- Moreover, any $\mathscr{F}_{R, U}$ has symmetries coming from the general semilinear group $\Gamma \mathrm{L}_{2}(R)=\mathrm{GL}_{2}(R) \rtimes \operatorname{Aut}(R)$.
- Some Farey complexes have more symmetries.
- For a field $K, \mathscr{F}_{K, K^{\times}}$is the projective line over K.
- It is a complete graph, its symmetry group (collineation group) is the symmetric group.

Gallery of Farey graphs: $\mathscr{F}_{\mathcal{O}_{d}, \mathcal{O}_{d}^{\times}}$and tessellations of hyperbolic space

Farey graph over integers is a hyperbolic tessellation

Tessellation of the hyperbolic plane by ideal triangles

Farey graph over Gaussian integers

Consider Gaussian integers $R=\mathbb{Z}[i], U=\mathbb{Z}[i]^{\times}=\{ \pm 1, \pm i\}$, and the Farey graph $\mathscr{F}_{R, U}$.

Farey graph over Gaussian integers

Consider Gaussian integers $R=\mathbb{Z}[i], U=\mathbb{Z}[i]^{\times}=\{ \pm 1, \pm i\}$, and the Farey graph $\mathscr{F}_{R, U}$.
Vertices $\frac{a+i b}{c+i d}$ can be identified with Gaussian rationals $\mathbb{Q}(i) \subset \mathbb{C}$.

Farey graph over Gaussian integers

Consider Gaussian integers $R=\mathbb{Z}[i], U=\mathbb{Z}[i]^{\times}=\{ \pm 1, \pm i\}$, and the Farey graph $\mathscr{F}_{R, U}$.
Vertices $\frac{a+i b}{c+i d}$ can be identified with Gaussian rationals $\mathbb{Q}(i) \subset \mathbb{C}$. Edges can be drawn in the upper half-space understood as the hyperbolic space \mathbb{H}^{3}, as hyperbolic lines.

Farey graph over Gaussian integers

Consider Gaussian integers $R=\mathbb{Z}[i], U=\mathbb{Z}[i]^{\times}=\{ \pm 1, \pm i\}$, and the Farey graph $\mathscr{F}_{R, U}$.
Vertices $\frac{a+i b}{c+i d}$ can be identified with Gaussian rationals $\mathbb{Q}(i) \subset \mathbb{C}$. Edges can be drawn in the upper half-space understood as the hyperbolic space \mathbb{H}^{3}, as hyperbolic lines.
Set of edges is the orbit of the edge $1 / 0$ to $0 / 1$ under $\mathrm{SL}_{2}(\mathbb{Z}[i])$.

Farey graph over Gaussian integers

Consider Gaussian integers $R=\mathbb{Z}[i], U=\mathbb{Z}[i]^{\times}=\{ \pm 1, \pm i\}$, and the Farey graph $\mathscr{F}_{R, U}$.
Vertices $\frac{a+i b}{c+i d}$ can be identified with Gaussian rationals $\mathbb{Q}(i) \subset \mathbb{C}$. Edges can be drawn in the upper half-space understood as the hyperbolic space \mathbb{H}^{3}, as hyperbolic lines.
Set of edges is the orbit of the edge $1 / 0$ to $0 / 1$ under $\mathrm{SL}_{2}(\mathbb{Z}[i])$. It is the 1 -skeleton of the tessellation of \mathbb{H}^{3} by ideal octahedra.

(see e.g. papers by M. Hockman for the relation to continued fractions)

Farey graph over Eisenstein integers

$\mathscr{F}_{R, U}$ with $R=\mathbb{Z}[\sigma]$ with $\sigma=e^{i \pi / 3}, U=\mathbb{Z}[\sigma]^{\times}=\left\{ \pm 1, \pm \sigma, \pm \sigma^{2}\right\}$.
(A. Felikson, O. Karpenkov, Kh. Serhiyenko, P. Tumarkin, arXiv:2306.17118)

Farey graph over Eisenstein integers

$\mathscr{F}_{R, U}$ with $R=\mathbb{Z}[\sigma]$ with $\sigma=e^{i \pi / 3}, U=\mathbb{Z}[\sigma]^{\times}=\left\{ \pm 1, \pm \sigma, \pm \sigma^{2}\right\}$. Again, edges drawn in \mathbb{H}^{3} as the orbit of the edge $1 / 0$ to $0 / 1$ under $\mathrm{SL}_{2}(\mathbb{Z}[\sigma])$, or $\mathrm{PSL}_{2}(\mathbb{Z}[\sigma])$.
(A. Felikson, O. Karpenkov, Kh. Serhiyenko, P. Tumarkin, arXiv:2306.17118)

Farey graph over Eisenstein integers

$\mathscr{F}_{R, U}$ with $R=\mathbb{Z}[\sigma]$ with $\sigma=e^{i \pi / 3}, U=\mathbb{Z}[\sigma]^{\times}=\left\{ \pm 1, \pm \sigma, \pm \sigma^{2}\right\}$. Again, edges drawn in \mathbb{H}^{3} as the orbit of the edge $1 / 0$ to $0 / 1$ under $\mathrm{SL}_{2}(\mathbb{Z}[\sigma])$, or $\mathrm{PSL}_{2}(\mathbb{Z}[\sigma])$.
It is the 1 -skeleton of the tessellation of \mathbb{H}^{3} by ideal tetrahedra.

Symmetry group is $\mathrm{PL}_{2}(\mathbb{Z}[\sigma])=\mathrm{PGL}_{2}(\mathbb{Z}[\sigma]) \rtimes\langle$ c. c. \rangle.
(A. Felikson, O. Karpenkov, Kh. Serhiyenko, P. Tumarkin, arXiv:2306.17118)

Farey graphs over \mathcal{O}_{d}

More generally, let R be the ring of integers of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$, denoted \mathcal{O}_{d}, and $U=\mathcal{O}_{d}^{\times}$.

Farey graphs over \mathcal{O}_{d}

More generally, let R be the ring of integers of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$, denoted \mathcal{O}_{d}, and $U=\mathcal{O}_{d}^{\times}$. Let $d=1,2,3,7,11$:

- $\mathcal{O}_{1}=\mathbb{Z}[i]$,
- $\mathcal{O}_{3}=\mathbb{Z}[\sigma]$,
- $\mathcal{O}_{2}=\mathbb{Z}[i \sqrt{2}]$,
- $\mathcal{O}_{7}=\mathbb{Z}[(1+i \sqrt{7}) / 2]$,
- $\mathcal{O}_{11}=\mathbb{Z}[(1+i \sqrt{11}) / 2]$.

Farey graphs over \mathcal{O}_{d}

More generally, let R be the ring of integers of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$, denoted \mathcal{O}_{d}, and $U=\mathcal{O}_{d}^{\times}$.
Let $d=1,2,3,7,11$:

- $\mathcal{O}_{1}=\mathbb{Z}[i]$,
- $\mathcal{O}_{3}=\mathbb{Z}[\sigma]$,
- $\mathcal{O}_{2}=\mathbb{Z}[i \sqrt{2}]$,
- $\mathcal{O}_{7}=\mathbb{Z}[(1+i \sqrt{7}) / 2]$,
- $\mathcal{O}_{11}=\mathbb{Z}[(1+i \sqrt{11}) / 2]$.

The Farey graph $\mathscr{F}_{\mathcal{O}_{d}, \mathcal{O}_{d} \times}$ is again the orbit of $1 / 0-0 / 1$ under the Bianchi group $\mathrm{PSL}_{2}\left(\mathcal{O}_{d}\right)$.

Farey graphs over \mathcal{O}_{d}

$\mathscr{F}_{\mathcal{O}_{d}, \mathcal{O}_{d}^{\times}}$are again tessellations of \mathbb{H}^{3} by ideal polyhedra.

A cell of $\mathscr{F}_{\mathcal{O}_{1},\langle i\rangle}$

$\mathscr{F}_{\mathcal{O}_{2},\{ \pm 1\}}$

$\mathscr{F}_{\mathcal{O}_{3},\langle\sigma\rangle}$

$\mathscr{F}_{\mathcal{O}_{7},\{ \pm 1\}}$

$\mathscr{F}_{\mathcal{O}_{11},\{ \pm 1\}}$

For $d=1,2,3,7,11$, see Hatcher, J. London Math. Soc. (1983).
For other d, tessellations also exist but their edges
are not the same as $\mathscr{F}_{\mathcal{O}_{d}, \mathcal{O}_{d}^{\times}}$
See Vulakh, Cremona, and Yasaki for different generalisations.

Wild SL_{2}-tilings

Farey surfaces: combinatorial model for wild integer SL_{2}-tilings

Wild SL_{2}-tilings

An SL_{2}-tiling is tame if every 3×3 block has determinant 0 . Otherwise, it is wild.

Wild SL_{2}-tilings

An SL_{2}-tiling is tame if every 3×3 block has determinant 0 . Otherwise, it is wild.

$$
\begin{array}{ccccccccc}
& \left.\begin{array}{ccccccc}
0 & 1 & 0 & -1 & 0 & 1 & 0 \\
& -1 & 0 & 1 & \breve{0} & -1 & \breve{0} \\
1 & 1 & \\
\cdots & 0 & -1 & 0 & 1 & 9 & -1 \\
0 & \cdots \\
& 1 & 0 & -1 & \breve{0} & 1 & \breve{0} \\
& -1 & \\
0 & 1 & 0 & -1 & 0 & 1 & 0
\end{array}\right) .
\end{array}
$$

In an SL_{2}-tiling, $e \cdot \operatorname{det}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=0$.

Wild SL_{2}-tilings

An SL_{2}-tiling is tame if every 3×3 block has determinant 0 . Otherwise, it is wild.

$$
\begin{array}{ccccccccc}
& 0 & 1 & 0 & -1 & 0 & 1 & 0 & \\
& -1 & 0 & 1 & \breve{0} & -1 & \breve{0} & 1 & \\
\cdots & 0 & -1 & 0 & 1 & 9 & -1 & 0 & \cdots \\
& 1 & 0 & -1 & \breve{0} & 1 & \breve{0} & -1 & \\
0 & 1 & 0 & -1 & 0 & 1 & 0 &
\end{array}
$$

In an SL_{2}-tiling, $e \cdot \operatorname{det}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=0$.
Wild entries are always 0s over \mathbb{Z} (generally, zero divisors).

(C) Gaga Communications / Dragon Pictures / Takeuchi Entertainment

Wild SL_{2}-tilings

Tame SL_{2}-tilings correspond to pairs of paths in the Farey graph, what about wild ones?

Wild SL_{2}-tilings

Tame SL_{2}-tilings correspond to pairs of paths in the Farey graph, what about wild ones?

Idea: a 2×2 block in a wild SL_{2}-tiling is indistinguishable from a 2×2 block in a tame SL_{2}-tiling.

Farey edges

Definition. A Farey edge is a vertex-labelled graph consisting of a single edge joining vertices with labels $\left(i,\binom{a}{b}\right)$ and $\left(i+1,\binom{a^{\prime}}{b^{\prime}}\right)$, where $i \in \mathbb{Z}$ (to be referred as a coordinate) and $a, b, a^{\prime}, b^{\prime}$ are integers such that $\operatorname{det}\left(\begin{array}{ll}a & a^{\prime} \\ b & b^{\prime}\end{array}\right)=1$.

Example:

$$
\left(0,\binom{0}{1}\right)-\left(1,\binom{-1}{2}\right)
$$

Farey faces

Definition. A Farey face is a 2-dimensional cell complex consisting of a single 4-gonal cell, which is a direct product of two Farey edges.

Example:

$$
\begin{gathered}
\left(3,\binom{1}{2}\right)-\left(4,\binom{2}{5}\right) \times\left(8,\binom{-1}{0}\right)-\left(9,\binom{0}{-1}\right)= \\
\quad\left((3,8),\left(\begin{array}{cc}
1 & -1 \\
2 & 0
\end{array}\right)\right)-\left((3,9),\left(\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right)\right) \\
=\left(\begin{array}{l}
\mid
\end{array}\right)
\end{gathered}
$$

Farey surfaces

Definition. A Farey surface is a 2-dimensional cell complex consisting of Farey faces such that

- every edge belongs to exactly two faces, and
- for any two vertices labelled $((i, j), A)$ and $((i, j), B)$, $A \neq B$ and $\operatorname{det} A=\operatorname{det} B$.

This provides a well-defined way to turn a Farey surface into a bi-infinite matrix: $m_{i, j}=\operatorname{det} A$, where $((i, j), A)$ is a vertex in the Farey surface.
That bi-infinite matrix is always an SL_{2}-tiling.

Tame SL_{2}-tilings come from unbranched Farey surfaces

$$
\begin{gathered}
\left((-1,-1),\left(\begin{array}{cc}
3 & 2 \\
-2 & 3
\end{array}\right)\right)-\left((-1,0),\left(\begin{array}{cc}
3 & 1 \\
-2 & 2
\end{array}\right)\right)-\left((-1,1),\left(\begin{array}{cc}
3 & 0 \\
-2 & 1
\end{array}\right)\right) \\
\left((0,-1),\left(\begin{array}{cc}
2 & 2 \\
-1 & 3
\end{array}\right)\right)-\left((0,0),\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right)\right)-\left((0,1),\left(\begin{array}{cc}
2 & 0 \\
-1 & 1
\end{array}\right)\right) \\
\left.\left((1,-1),\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right)\right)-\left((1,0),\left(\begin{array}{cc}
1 & 1 \\
0 & 2
\end{array}\right)\right)-\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right) \\
\downarrow \text { det }
\end{gathered}
$$

1383
‥ $8 \quad 5 \quad 2$...
$\begin{array}{lll}3 & 2\end{array}$

All SL_{2}-tilings come from Farey surfaces

The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on Farey surfaces by left multiplication by matrix labels.
Computing determinants of the matrix labels always gives an SL_{2}-tiling invariant under that action.

All SL_{2}-tilings come from Farey surfaces

The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on Farey surfaces by left multiplication by matrix labels.
Computing determinants of the matrix labels always gives an SL_{2}-tiling invariant under that action.

Theorem. There is a bijection between

- the set of Farey surfaces, modulo $\mathrm{SL}_{2}(\mathbb{Z})$,
- and the set of SL_{2}-tilings.

Zeros in tilings

What specifically happens around a 0 in an SL_{2}-tiling?
Whenever $m_{i, j}=0$,

$$
M_{i, j}=\left(\begin{array}{ccc}
m_{i-1, j-1} & m_{i-1, j} & m_{i-1, j+1} \\
m_{i, j-1} & m_{i, j} & m_{i, j+1} \\
m_{i+1, j-1} & m_{i+1, j} & m_{i+1, j+1}
\end{array}\right)= \pm\left(\begin{array}{ccc}
-u^{\prime}+v & 1 & u^{\prime}+v^{\prime}+w_{i, j} \\
-1 & 0 & 1 \\
-u-v & -1 & u-v^{\prime}
\end{array}\right)
$$

for some $u, u^{\prime}, v, v^{\prime}, w_{i, j}$ and $\operatorname{det} M_{i, j}= \pm w_{i, j}$.

$$
\begin{array}{cccccccc}
& 0 & 1 & 0 & -1 & 0 & 1 & 0 \\
& -1 & 0 & 1 & \breve{0} & -1 & \breve{0} & 1 \\
& 0 & -1 & 0 & 1 & 9 & -1 & 0 \\
& 1 & 0 & -1 & \breve{0} & 1 & \breve{0} & -1 \\
& \cdots & 1 & 0 & -1 & 0 & 1 & 0 \\
& -1 & 0 & 1 & 0 & -1 & 0 & 1 \\
& 0 & -1 & 0 & 1 & 0 & -1 & 0
\end{array}
$$

Zeros in tilings

A portion of a Farey surface which is mapped to $M_{i, j}$ with $m_{i, j}=0$ and $\operatorname{det} M_{i, j}=0$ looks like this, up to the action of $\mathrm{SL}_{2}(\mathbb{Z})$:

$$
\begin{aligned}
& \left((i-1, j-1),\left(\begin{array}{c}
u^{\prime} \pm v \\
-1 \\
\mp 1
\end{array}\right)\right)-\left((i-1, j),\left(\begin{array}{c}
u^{\prime} \pm 1 \\
-1 \\
0
\end{array}\right)\right)-\left((i-1, j+1),\left(\begin{array}{c}
u^{\prime} \pm v^{\prime} \\
-1 \\
\pm 1
\end{array}\right)\right) \\
& S_{0}\left((i, j),\binom{1+1}{0}\right) \\
& S_{3}
\end{aligned}
$$

$$
\begin{aligned}
& S_{1} \\
& \left((i+1, j-1),\left(\begin{array}{c}
u \pm v \\
1 \\
\mp
\end{array}\right)\right)-\left((i+1, j),\left(\begin{array}{c}
u \pm 1 \\
1
\end{array} 0\right)\right)-\left((i+1, j+1),\left(\begin{array}{c}
u \neq v^{\prime} \\
1 \\
1
\end{array}\right)\right)
\end{aligned}
$$

Wild zeros in tilings

Now let $\operatorname{det} M_{i, j}=w_{i, j} \neq 0$. A few Farey faces adjacent to a vertex with coordinates (i, j) look like this (i.e. same as above), up to the action of $\mathrm{SL}_{2}(\mathbb{Z}) \ldots$

$$
\begin{aligned}
& \left((i-1, j-1),\left(\begin{array}{c}
u^{\prime} \neq v \\
-1 \\
\ddagger
\end{array}\right)\right)-\quad\left((i-1, j),\left(\begin{array}{cc}
u^{\prime} & \pm 1 \\
-1 & 0
\end{array}\right)\right) \\
& S_{0} \\
& \left((i, j-1),\left(\begin{array}{c}
1 \\
0 \\
0 \\
\ddagger
\end{array}\right)\right)-\left((i, j),\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)-1\right. \\
& S_{1} \\
& \left((i+1, j-),\left(\begin{array}{c}
u \pm v \\
1 \\
1
\end{array}\right)\right)-\left((i+1, j),\left(\begin{array}{cc}
u \pm 1 \\
1 & 0
\end{array}\right)\right)-\quad\left((i+1, j+1),\left(\begin{array}{c}
u \pm v^{\prime} \\
1 \\
\pm
\end{array}\right)\right)
\end{aligned}
$$

Wild zeros in tilings

...and more faces look like this (S_{2} is same as above, faces \bar{S}_{0} and S_{0} are different sheets of the same covering):

$$
\begin{aligned}
& \left(\cdot,\left(\begin{array}{c}
u^{\prime}+w_{i, j} \\
-1
\end{array} \underset{\mp 1}{\left. \pm+w_{i, j}\right)}\right)\right)-\left(\cdot,\left(\begin{array}{cc}
u^{\prime}+w_{i, j} \pm 1 \\
-1 & 0
\end{array}\right)\right)-\left(\cdot,\left(\begin{array}{c}
u^{\prime}+w_{i, j} \\
-1 \\
\pm v^{\prime} \\
\pm 1
\end{array}\right)\right) \\
& \bar{S}_{0}
\end{aligned}
$$

$$
\begin{aligned}
& S_{2} \\
& \left.\left(\cdot,\left(\begin{array}{c}
u \pm 1 \\
1
\end{array} 0\right)\right) \longrightarrow\left(\cdot, \begin{array}{l}
u \pm v^{\prime} \\
1 \\
\pm 1
\end{array}\right)\right)
\end{aligned}
$$

What Farey surfaces look like

A Farey surface of a tame SL_{2}-tiling is the plane:

A Farey surface around a wild zero looks like the Riemann surface of $\log (z)$:

What Farey surfaces look like

Very wild SL_{2}-tilings

A maximally wild integer SL_{2}-tiling

How tightly can we pack wild zeros in an SL_{2}-tiling?

A maximally wild integer SL_{2}-tiling

How tightly can we pack wild zeros in an SL_{2}-tiling? of

A maximally wild integer SL_{2}-tiling

How tightly can we pack wild zeros in an SL_{2}-tiling? \&

A maximally wild integer SL_{2}-tiling

How tightly can we pack wild zeros in an SL_{2}-tiling? $\varnothing \varnothing$

40% of entries are wild. Can we do better?

A maximally wild integer SL_{2}-tiling

How tightly can we pack wild zeros in an SL_{2}-tiling? $\varnothing \varnothing$

40% of entries are wild. Can we do better?

Yes, but not over an integral domain!

A maximally wild SL_{2}-tiling: how to construct it

Generally, in an SL_{2}-tiling,
$\operatorname{det}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=(a+c+g+i)+(c g-a i) e$.

A maximally wild SL_{2}-tiling: how to construct it

Generally, in an SL_{2}-tiling,
$\operatorname{det}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=(a+c+g+i)+(c g-a i) e$.

Repeat

$$
\begin{array}{ccccc}
3 & 2 & -3 & -2 \\
4 & 3 & -4 & -3 & \ldots \\
-3 & -2 & 3 & 2 & \\
-4 & -3 & 4 & 3 &
\end{array}
$$

A maximally wild SL_{2}-tiling: how to construct it

Generally, in an SL_{2}-tiling,
$\operatorname{det}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=(a+c+g+i)+(c g-a i) e$.

Repeat and take entries modulo $N=2^{2} \cdot 3^{2}=36$

$$
\begin{array}{rrrrr}
3 & 2 & -3 & -2 & \\
4 & 3 & -4 & -3 & \ldots \\
N / 3-3 & N / 2-2 & 3 & 2 & \\
N / 2-4 & N / 3-3 & 4 & 3 &
\end{array}
$$

A maximally wild SL_{2}-tiling

The SL_{2}-tiling is over $\mathbb{Z} / 36 \mathbb{Z}$. Repeat:

3	2	33	34	
4	3	32	33	\ldots
9	16	3	2	
14	9	4	3	
	\vdots			

A maximally wild SL_{2}-tiling

The SL_{2}-tiling is over $\mathbb{Z} / 36 \mathbb{Z}$. Repeat:

3	2	33	34	
4	3	32	33	\ldots
9	16	3	2	
14	9	4	3	
	\vdots			

All entries of this SL_{2}-tiling are wild, 3×3 determinants being
12181218
$18121812 \ldots$
12181218
18121812

- A closed, non-self-intersecting path in the Farey graph over $\mathbb{Z} / N \mathbb{Z}$ lifts to \mathbb{Z} essentially non-uniquely when $N=5$ and it is one of 9 distinguished Hamiltonian cycles.
- Farey graphs arise e.g. from Bianchi groups associated with $\mathbb{Q}(\sqrt{-d})$ for $d=1,2,3,7,11$.
- Farey surface is a combinatorial model for any SL_{2}-tiling.
- There is an SL_{2}-tiling with all entries wild.

Thank you!
Questions, please.

SL2tilings.github.io
mathstodon.xyz/PSL2Z

[^0]: *under reflection with direction change and a basepoint shift

