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Gallery of Farey graphs



Farey complexes

The Farey complex over integers is a graph that has

vertices: equiv. classes {ab ∶ a, b ∈ Z, a, b coprime}/ ∼, with a
b ∼

−a
−b ;

edges: from a
b to c

d whenever ad − bc = ±1.
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see arXiv:2312.12953 and talks by Ian and Matty
3 / 44



Farey complexes

For ring R and group of units U ⊂ R×, Farey complex FR,U has

vertices: equiv. classes {ab ∶ a, b ∈ R, aR + bR = R}/ ∼, a
b ∼

ua
ub ∀u∈U;

edges: from a
b to c

d whenever ad − bc ∈ U .

Define FR =FR,{±1}.
Example: the Farey graph over integers FZ
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Farey complexes: application

SL2(R)/{
pairs of bi-infinite
paths in FR,U

} ←→ (U ×U)/{tame SL2-tilings
over R

}

SL2(R)/{
paths in FR,U from
any a

b to ua
ub , u ∈ R

× } ←→ U /{tame friezes over R
with first row of 1s

}
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Gallery of Farey graphs

● FZ/NZ and uniqueness of lifting
● FF4 , FK,K× , and symmetries of Farey complex
● FOd,O×d and tessellations of hyperbolic space

by Jorge Royan, commons.wikimedia.org/wiki/File:Oxford - Pitt Rivers Museum - 0269.jpg, CCBY-SA 3.0
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Gallery of Farey graphs: FZ/NZ and
uniqueness of lifting



FZ/NZ and uniqueness of lifting: Farey complexes for integers modulo N
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FZ/NZ and uniqueness of lifting

A path in FZ/NZ lifts to a closed path in FZ (and defines an
integer frieze) when it is closed and strongly contractible.

For a non-self-intersecting path, it means that it bounds a disk
with no internal vertices. (The lifted frieze is then nonzero.)
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The lifting of a path can be unique up to
SL2(Z) only if it has no self-intersections.
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FZ/NZ and uniqueness of lifting

Can a non-self-intersecting path in FZ/NZ be lifted to
different paths in FZ, up to the action of SL2(Z) transformations?

It has to bound two disks with no internal vertices
= be a Hamiltonian cycle on a sphere.
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These two are related by reflection + basepoint shift.

Can a path be lifted to two really different paths?
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FZ/NZ and uniqueness of lifting

FZ/5Z
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FZ/NZ and uniqueness of lifting

There are 17 Hamiltonian cycles on an icosahedron,
9 of which separate the icosahedron into two differently
triangulated disks.
(Sainte-Laguë, 1937)
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FZ/NZ and uniqueness of lifting: conclusion

Theorem. Suppose γ is a path in FZ/NZ. Consider its lift(s) to
closed path(s) in FZ, up to the action of SL2(Z).

� If N = 5 and γ is one of the 9 distinguished Hamiltonian
cycles, then γ has 2 inequivalent* lifts;

� else, if N = 2,3,4,5 and γ is a Hamiltonian cycle, then γ has
2 equivalent lifts;

� else, if γ is non-self-intersecting, then γ has at most 1 lift;

� otherwise, γ has either no or infinitely many lifts.

*under reflection with direction change and a basepoint shift
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Gallery of Farey graphs: FF4, FK,K×, and
symmetries of Farey complexes



Symmetries of Farey complexes

● Any FR,U has symmetries represented by the special linear
group SL2(R). SL2-tilings are invariant w.r.t. its action.

● Moreover, any FR,U has symmetries coming from the general
semilinear group ΓL2(R) = GL2(R) ⋊Aut(R).

Example: let R = F4 = {0,1, a, b} be a field, U = {1}. Frobenius
automorphism a↔ b acts on FF4 :
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FF4 is embedded into projective plane in two different ways
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Symmetries of Farey complexes

● Any FR,U has symmetries represented by the special linear
group SL2(R). SL2-tilings are invariant w.r.t. its action.

● Moreover, any FR,U has symmetries coming from the general
semilinear group ΓL2(R) = GL2(R) ⋊Aut(R).
● Some Farey complexes have more symmetries.

● For a field K, FK,K× is the projective line over K.
● It is a complete graph, its symmetry group (collineation group)

is the symmetric group.
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Gallery of Farey graphs: FOd,O×d and
tessellations of hyperbolic space



Farey graph over integers is a hyperbolic tessellation

Tessellation of the hyperbolic plane by ideal triangles
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Farey graph over Gaussian integers

Consider Gaussian integers R = Z[i], U = Z[i]× = {±1,±i}, and the
Farey graph FR,U .

Vertices a+ib
c+id can be identified with Gaussian rationals Q(i) ⊂ C.

Edges can be drawn in the upper half-space understood as the
hyperbolic space H3, as hyperbolic lines.
Set of edges is the orbit of the edge 1/0 to 0/1 under SL2(Z[i]).
It is the 1-skeleton of the tessellation of H3 by ideal octahedra.

(see e.g. papers by M. Hockman for the relation to continued fractions)
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Farey graph over Eisenstein integers

FR,U with R = Z[σ] with σ = eiπ/3, U = Z[σ]× = {±1,±σ,±σ2}.

Again, edges drawn in H3 as the orbit of the edge 1/0 to 0/1 under
SL2(Z[σ]), or PSL2(Z[σ]).
It is the 1-skeleton of the tessellation of H3 by ideal tetrahedra.

Symmetry group is PΓL2(Z[σ]) = PGL2(Z[σ]) ⋊ ⟨c. c.⟩.

(A. Felikson, O. Karpenkov, Kh. Serhiyenko, P. Tumarkin, arXiv:2306.17118)
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Farey graphs over Od

More generally, let R be the ring of integers of the imaginary
quadratic field Q(

√
−d), denoted Od, and U = O×d .

Let d = 1,2,3,7,11:
● O1 = Z[i],
● O3 = Z[σ],
● O2 = Z[i

√
2],

● O7 = Z[(1 + i
√
7)/2],

● O11 = Z[(1 + i
√
11)/2].

The Farey graph FOd,O×d is again the orbit of 1/0—0/1 under the
Bianchi group PSL2(Od).
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Farey graphs over Od

FOd,O×d are again tessellations of H3 by ideal polyhedra.

A cell of
FO1,⟨i⟩

FO2,{±1} FO3,⟨σ⟩
FO7,{±1}

FO11,{±1}

For d = 1,2,3,7,11, see Hatcher, J. London Math. Soc. (1983).
For other d, tessellations also exist but their edges
are not the same as FOd,O×d .
See Vulakh, Cremona, and Yasaki for different generalisations.
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Wild SL2-tilings



Farey surfaces: combinatorial model for
wild integer SL2-tilings



Wild SL2-tilings

An SL2-tiling is tame if every 3 × 3 block has determinant 0.
Otherwise, it is wild.

⋮
0 1 0 −1 0 1 0

−1 0 1 0̆ −1 0̆ 1

⋯ 0 −1 0 1 9 −1 0 ⋯
1 0 −1 0̆ 1 0̆ −1
0 1 0 −1 0 1 0

⋮

In an SL2-tiling, e ⋅ det
⎛
⎜
⎝

a b c
d e f
g h i

⎞
⎟
⎠
= 0.

Wild entries are always 0s over Z (generally, zero divisors).
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⋮
0 1 0 −1 0 1 0

−1 0 1 0̆ −1 0̆ 1

⋯ 0 −1 0 1 9 −1 0 ⋯
1 0 −1 0̆ 1 0̆ −1
0 1 0 −1 0 1 0

⋮
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⎛
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Wild SL2-tilings

Tame SL2-tilings correspond to pairs of paths in the Farey graph,
what about wild ones?

Idea: a 2 × 2 block in a wild SL2-tiling is indistinguishable from a
2 × 2 block in a tame SL2-tiling.
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Farey edges

Definition. A Farey edge is a vertex-labelled graph consisting of a
single edge joining vertices with labels (i, ( ab )) and (i + 1, ( a

′
b′ )),

where i ∈ Z (to be referred as a coordinate) and a, b, a′, b′ are

integers such that det(a a′

b b′
) = 1.

Example:

(0, ( 01 )) (1, ( −12 ))
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Farey faces

Definition. A Farey face is a 2-dimensional cell complex consisting
of a single 4-gonal cell, which is a direct product of two Farey
edges.

Example:

(3, ( 12 )) (4, ( 25 )) × (8, ( −10 )) (9, ( 0
−1 )) =

=

((3,8), ( 1 −12 0 )) ((3,9), ( 1 0
2 −1 ))

((4,8), ( 2 −15 0 )) ((4,9), ( 2 0
5 −1 ))

29 / 44



Farey surfaces

Definition. A Farey surface is a 2-dimensional cell complex
consisting of Farey faces such that

● every edge belongs to exactly two faces, and

● for any two vertices labelled ((i, j),A) and ((i, j),B),
A ≠ B and detA = detB.

This provides a well-defined way to turn a Farey surface into
a bi-infinite matrix: mi,j = detA, where ((i, j),A) is a vertex in
the Farey surface.
That bi-infinite matrix is always an SL2-tiling.
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Tame SL2-tilings come from unbranched Farey surfaces

((−1,−1),( 3 2
−2 3

)) ((−1,0),( 3 1
−2 2

)) ((−1,1),( 3 0
−2 1

))

((0,−1),( 2 2
−1 3

)) ((0,0),( 2 1
−1 2

)) ((0,1),( 2 0
−1 1

))

((1,−1),(1 2
0 3
)) ((1,0),(1 1

0 2
)) ((1,1),(1 0

0 1
))

↧ det

13 8 3

⋯ 8 5 2 ⋯
3 2 1
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All SL2-tilings come from Farey surfaces

The group SL2(Z) acts on Farey surfaces by left multiplication by
matrix labels.
Computing determinants of the matrix labels always gives an
SL2-tiling invariant under that action.

Theorem. There is a bijection between

● the set of Farey surfaces, modulo SL2(Z),
● and the set of SL2-tilings.
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Zeros in tilings

What specifically happens around a 0 in an SL2-tiling?
Whenever mi,j = 0,

Mi,j =
⎛
⎜
⎝

mi−1,j−1 mi−1,j mi−1,j+1
mi,j−1 mi,j mi,j+1
mi+1,j−1 mi+1,j mi+1,j+1

⎞
⎟
⎠
= ±
⎛
⎜
⎝

−u′ + v 1 u′ + v′ +wi,j

−1 0 1
−u − v −1 u − v′

⎞
⎟
⎠

for some u,u′, v, v′,wi,j and detMi,j = ±wi,j .

⋮
0 1 0 −1 0 1 0

−1 0 1 0̆ −1 0̆ 1

0 −1 0 1 9 −1 0

⋯ 1 0 −1 0̆ 1 0̆ −1 ⋯
0 1 0 −1 0 1 0

−1 0 1 0 −1 0 1

0 −1 0 1 0 −1 0

⋮
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Zeros in tilings

A portion of a Farey surface which is mapped to Mi,j with mi,j = 0
and detMi,j = 0 looks like this, up to the action of SL2(Z):

((i−1,j−1), ( u′ ±v−1 ∓1 )) ((i−1,j), ( u′ ±1−1 0 )) ((i−1,j+1), ( u′ ±v′−1 ±1 ))

((i,j−1), ( 1 ±v0 ∓1 )) ((i,j), ( 1 ±10 0 )) ((i,j+1), ( 1 ±v′0 ±1 ))

((i+1,j−1), ( u ±v1 ∓1 )) ((i+1,j), ( u ±11 0 )) ((i+1,j+1), ( u ±v′1 ±1 ))

S0

S1 S2

S3
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Wild zeros in tilings

Now let detMi,j = wi,j ≠ 0. A few Farey faces adjacent to a vertex
with coordinates (i, j) look like this (i.e. same as above), up to the
action of SL2(Z)...

((i−1,j−1), ( u′ ±v−1 ∓1 )) ((i−1,j), ( u′ ±1−1 0 ))

((i,j−1), ( 1 ±v0 ∓1 )) ((i,j), ( 1 ±10 0 )) ((i,j+1), ( 1 ±v′0 ±1 ))

((i+1,j−), ( u ±v1 ∓1 )) ((i+1,j), ( u ±11 0 )) ((i+1,j+1), ( u ±v′1 ±1 ))

S0

S1 S2
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Wild zeros in tilings

...and more faces look like this (S2 is same as above, faces S̄0 and
S0 are different sheets of the same covering):

( ⋅ , ( u′+wi,j ±(v+wi,j)
−1 ∓1 )) ( ⋅ , ( u′+wi,j ±1

−1 0
)) ( ⋅ , ( u′+wi,j ±v′

−1 ±1 ))

( ⋅ , ( 1 ±v0 ∓1 )) ((i,j), ( 1 ±10 0 )) ( ⋅ , ( 1 ±v′0 ±1 ))

( ⋅ , ( u ±11 0 )) ( ⋅ , ( u ±v′1 ±1 ))

S̄0

S2

S̄3

36 / 44



What Farey surfaces look like

A Farey surface of a tame
SL2-tiling is the plane:

A Farey surface around a wild
zero looks like the Riemann
surface of Log(z):
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What Farey surfaces look like

⋮
0 −1 0 1 0

1 0̆ −1 0̆ 1

⋯ 0 1 9 −1 0 ⋯
−1 0̆ 1 0̆ −1
0 −1 0 1 0

⋮
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Very wild SL2-tilings



A maximally wild integer SL2-tiling

How tightly can we pack wild zeros in an SL2-tiling?

��00

0 (wild)
1
-1
≠0

tame
wild

40% of entries are wild. Can we do better?

Yes, but not over an integral domain!
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A maximally wild SL2-tiling: how to construct it

Generally, in an SL2-tiling,

det
⎛
⎜
⎝

a b c
d e f
g h i

⎞
⎟
⎠
= (a + c + g + i) + (cg − ai)e.

Repeat

and take entries modulo N = 22 ⋅ 32 = 36

3 2 − 3 − 2

4 3 − 4 − 3 . . .

N/3

− 3

N/2

− 2 3 2

N/2

− 4

N/3

− 3 4 3
⋮
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A maximally wild SL2-tiling: how to construct it

Generally, in an SL2-tiling,

det
⎛
⎜
⎝

a b c
d e f
g h i

⎞
⎟
⎠
= (a + c + g + i) + (cg − ai)e.

Repeat and take entries modulo N = 22 ⋅ 32 = 36

3 2 − 3 − 2

4 3 − 4 − 3 . . .

N/3 − 3 N/2 − 2 3 2

N/2 − 4 N/3 − 3 4 3
⋮
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A maximally wild SL2-tiling

The SL2-tiling is over Z/36Z. Repeat:

3 2 33 34

4 3 32 33 . . .

9 16 3 2

14 9 4 3

⋮

All entries of this SL2-tiling are wild, 3 × 3 determinants being

12 18 12 18

18 12 18 12 . . .

12 18 12 18

18 12 18 12

⋮
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● A closed, non-self-intersecting path in the Farey graph
over Z/NZ lifts to Z essentially non-uniquely when N = 5
and it is one of 9 distinguished Hamiltonian cycles.

● Farey graphs arise e.g. from Bianchi groups
associated with Q(

√
−d) for d = 1,2,3,7,11.

● Farey surface is a combinatorial model for any SL2-tiling.

● There is an SL2-tiling with all entries wild.

Thank you!
Questions, please.

SL2tilings.github.io

mathstodon.xyz/PSL2Z
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