Cutting Sequences, Hecke Congruence Subgroups and the p-adic Littlewood Conjecture

John Blackman
Continued Fractions and $S L_{2}$-Tilings
$28^{\text {th }}$ March 2024

johnblackman.maths@gmail.com
https://johnblackmanmaths.wordpress.com/

Table of Contents

(1) The p-adic Littlewood Conjecture (pLC)
(2) Cutting Sequences
(3) Integer Multiplication of Continued Fractions and Triangulation Replacement
(4) Cutting Sequences and the p-adic Littlewood Conjecture

The p-adic Littlewood Conjecture (pLC)

Diophantine Approximation

Roughly speaking, the aim of Diophantine approximation is to understand how efficiently we can approximate real numbers by rational numbers?

Diophantine Approximation

Roughly speaking, the aim of Diophantine approximation is to understand how efficiently we can approximate real numbers by rational numbers? I.e. how well can we approximate a real number α by a rational number $\frac{p}{q}$, once we compensate for the size of the denominator q ?

Diophantine Approximation

Roughly speaking, the aim of Diophantine approximation is to understand how efficiently we can approximate real numbers by rational numbers? I.e. how well can we approximate a real number α by a rational number $\frac{p}{q}$, once we compensate for the size of the denominator q ?
This can be measured by asking "what is the smallest value of c such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{c}{q^{2}}
$$

has infinitely many solutions for $\frac{p}{q} \in \mathbb{Q}$?"

Diophantine Approximation

Roughly speaking, the aim of Diophantine approximation is to understand how efficiently we can approximate real numbers by rational numbers? I.e. how well can we approximate a real number α by a rational number $\frac{p}{q}$, once we compensate for the size of the denominator q ?
This can be measured by asking "what is the smallest value of c such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{c}{q^{2}}
$$

has infinitely many solutions for $\frac{p}{q} \in \mathbb{Q}$?" This value is called the Markov Constant $\nu(\alpha)$.

Diophantine Approximation

Roughly speaking, the aim of Diophantine approximation is to understand how efficiently we can approximate real numbers by rational numbers? I.e. how well can we approximate a real number α by a rational number $\frac{p}{q}$, once we compensate for the size of the denominator q ?
This can be measured by asking "what is the smallest value of c such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{c}{q^{2}}
$$

has infinitely many solutions for $\frac{p}{q} \in \mathbb{Q}$?" This value is called the Markov Constant $\nu(\alpha)$.
Alternatively, we can write $\nu(\alpha)$ as:

$$
\nu(\alpha):=\liminf _{q \in \mathbb{N}}\{q \cdot\|q \alpha\|\}
$$

where $\|\cdot\|$ is the distance to the nearest integer function.

Diophantine Approximation

If $\nu(\alpha)=0$, then we say that α is well approximable. Otherwise, we say that α is badly approximable and we denote the set of all badly approximable numbers as Bad, i.e.:

$$
\text { Bad :=\{ }\{\alpha \in \mathbb{R}: \nu(\alpha)>0\} .
$$

Diophantine Approximation

If $\nu(\alpha)=0$, then we say that α is well approximable. Otherwise, we say that α is badly approximable and we denote the set of all badly approximable numbers as Bad, i.e.:

$$
\text { Bad :=\{ }\{\in \mathbb{R}: \nu(\alpha)>0\} .
$$

Rather than using the Markov constant, in this talk we will use:

$$
c(\alpha):=\inf _{q \in \mathbb{N}}\{q \cdot\|q \alpha\|\}
$$

Diophantine Approximation

If $\nu(\alpha)=0$, then we say that α is well approximable. Otherwise, we say that α is badly approximable and we denote the set of all badly approximable numbers as Bad, i.e.:

$$
\text { Bad }:=\{\alpha \in \mathbb{R}: \nu(\alpha)>0\} .
$$

Rather than using the Markov constant, in this talk we will use:

$$
c(\alpha):=\inf _{q \in \mathbb{N}}\{q \cdot\|q \alpha\|\}
$$

NB: $c(\alpha)=0 \Longleftrightarrow \nu(\alpha)=0$

Diophantine Approximation

If $\nu(\alpha)=0$, then we say that α is well approximable. Otherwise, we say that α is badly approximable and we denote the set of all badly approximable numbers as Bad, i.e.:

$$
\text { Bad := }\{\alpha \in \mathbb{R}: \nu(\alpha)>0\} .
$$

Rather than using the Markov constant, in this talk we will use:

$$
c(\alpha):=\inf _{q \in \mathbb{N}}\{q \cdot\|q \alpha\|\}
$$

NB: $c(\alpha)=0 \Longleftrightarrow \nu(\alpha)=0$

Theorem (Hurwitz)

For all $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, we have $0 \leq c(\alpha) \leq \nu(\alpha) \leq \frac{1}{\sqrt{5}}$.

Continued Fractions

Definition

A (simple) continued fraction $\bar{\alpha}$ is an expression of the form:

$$
\bar{\alpha}:=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots .}}},
$$

where $a_{0} \in \mathbb{Z}$ and $a_{i} \in \mathbb{N}$ for $i \geq 1$.

Continued Fractions

Definition

A (simple) continued fraction $\bar{\alpha}$ is an expression of the form:

$$
\bar{\alpha}:=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots}}},
$$

where $a_{0} \in \mathbb{Z}$ and $a_{i} \in \mathbb{N}$ for $i \geq 1$.
To simplify notation, we write $\bar{\alpha}:=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$. We refer to the a_{i} 's as the partial quotients.

Convergents of Continued Fractions

Definition

Let $\bar{\alpha}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ be a continued fraction. We define the k-th convergent of $\bar{\alpha}$ to be $\frac{p_{k}}{q_{k}}:=\left[a_{0} ; a_{1}, \ldots, a_{k}\right]$.

Convergents of Continued Fractions

Definition

Let $\bar{\alpha}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ be a continued fraction. We define the k-th convergent of $\bar{\alpha}$ to be $\frac{p_{k}}{q_{k}}:=\left[a_{0} ; a_{1}, \ldots, a_{k}\right]$.

We can define these terms iteratively:

$$
\begin{array}{lll}
p_{-1}=1 & p_{0}=a_{0} & p_{k}=a_{k} p_{k-1}+p_{k-2} \\
q_{-1}=0 & q_{0}=1 & q_{k}=a_{k} q_{k-1}+q_{k-2}
\end{array}
$$

Convergents of Continued Fractions

Definition

Let $\bar{\alpha}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ be a continued fraction. We define the k-th convergent of $\bar{\alpha}$ to be $\frac{p_{k}}{q_{k}}:=\left[a_{0} ; a_{1}, \ldots, a_{k}\right]$.

We can define these terms iteratively:

$$
\begin{array}{lll}
p_{-1}=1 & p_{0}=a_{0} & p_{k}=a_{k} p_{k-1}+p_{k-2} \\
q_{-1}=0 & q_{0}=1 & q_{k}=a_{k} q_{k-1}+q_{k-2}
\end{array}
$$

We refer to the term p_{k} as the k-th convergent numerator of α and q_{k} as the k-th convergent denominator.

Convergents of Continued Fractions

Definition

Let $\bar{\alpha}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ be a continued fraction. We define the k-th convergent of $\bar{\alpha}$ to be $\frac{p_{k}}{q_{k}}:=\left[a_{0} ; a_{1}, \ldots, a_{k}\right]$.

We can define these terms iteratively:

$$
\begin{array}{lll}
p_{-1}=1 & p_{0}=a_{0} & p_{k}=a_{k} p_{k-1}+p_{k-2} \\
q_{-1}=0 & q_{0}=1 & q_{k}=a_{k} q_{k-1}+q_{k-2}
\end{array}
$$

We refer to the term p_{k} as the k-th convergent numerator of α and q_{k} as the k-th convergent denominator.
Convergents provide us with very good rational approximations of real numbers. In fact, the convergents give the best possible rational approximations of α (in terms of the Markov constant and $c(\alpha)$).

Semi-Convergents of Continued Fractions

Definition

Let $\bar{\alpha}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ be a continued fraction expansion of some real number α. We define the $\{k, m\}$-th semi-convergent of $\bar{\alpha}$ to be $\frac{p_{\{k, m\}}}{q_{\{k, m\}}}:=$ $\left[a_{0} ; a_{1}, \ldots, a_{k}, m\right]$, where $0 \leq m \leq a_{k+1}$.

Semi-Convergents of Continued Fractions

Definition

Let $\bar{\alpha}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ be a continued fraction expansion of some real number α. We define the $\{k, m\}$-th semi-convergent of $\bar{\alpha}$ to be $\frac{p_{\{k, m\}}}{q_{\{k, m\}}}:=$ $\left[a_{0} ; a_{1}, \ldots, a_{k}, m\right]$, where $0 \leq m \leq a_{k+1}$.

We can also define these iteratively:

$$
\begin{aligned}
p_{\{k, m\}} & =m p_{k}+p_{k-1} \\
q_{\{k, m\}} & =m q_{k}+q_{k-1}
\end{aligned}
$$

Semi-Convergents of Continued Fractions

Definition

Let $\bar{\alpha}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ be a continued fraction expansion of some real number α. We define the $\{k, m\}$-th semi-convergent of $\bar{\alpha}$ to be $\frac{p_{\{k, m\}}}{q_{\{k, m\}}}:=$ $\left[a_{0} ; a_{1}, \ldots, a_{k}, m\right]$, where $0 \leq m \leq a_{k+1}$.

We can also define these iteratively:

$$
\begin{aligned}
p_{\{k, m\}} & =m p_{k}+p_{k-1}, \\
q_{\{k, m\}} & =m q_{k}+q_{k-1} .
\end{aligned}
$$

We refer to the term $p_{\{k, m\}}$ as the $\{k, m\}$-th semi-convergent numerator of α and $q_{\{k, m\}}$ as the $\{k, m\}$-th semi-convergent denominator.

Semi-Convergents of Continued Fractions

Definition

Let $\bar{\alpha}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ be a continued fraction expansion of some real number α. We define the $\{k, m\}$-th semi-convergent of $\bar{\alpha}$ to be $\frac{p_{\{k, m\}}}{q_{\{k, m\}}}:=$ $\left[a_{0} ; a_{1}, \ldots, a_{k}, m\right]$, where $0 \leq m \leq a_{k+1}$.

We can also define these iteratively:

$$
\begin{aligned}
p_{\{k, m\}} & =m p_{k}+p_{k-1}, \\
q_{\{k, m\}} & =m q_{k}+q_{k-1} .
\end{aligned}
$$

We refer to the term $p_{\{k, m\}}$ as the $\{k, m\}$-th semi-convergent numerator of α and $q_{\{k, m\}}$ as the $\{k, m\}$-th semi-convergent denominator.
Semi-convergents also provide us with good rational approximations of real numbers (but not as good as standard convergents).

Back to Rational Approximation

Since the convergents of a real number give the best possible rational approximations, for any $\alpha \in \mathbb{R}$ the value of $c(\alpha)$ is minimised by the sequence of convergent denominators $\left\{q_{k}\right\}_{k \in \mathbb{N}}$, i.e.:

$$
c(\alpha):=\inf _{q \in \mathbb{N}}\{q \cdot\|q \alpha\|\}=\inf _{k \in \mathbb{N}}\left\{q_{k} \cdot\left\|q_{k} \alpha\right\|\right\}
$$

Back to Rational Approximation

Since the convergents of a real number give the best possible rational approximations, for any $\alpha \in \mathbb{R}$ the value of $c(\alpha)$ is minimised by the sequence of convergent denominators $\left\{q_{k}\right\}_{k \in \mathbb{N}}$, i.e.:

$$
c(\alpha):=\inf _{q \in \mathbb{N}}\{q \cdot\|q \alpha\|\}=\inf _{k \in \mathbb{N}}\left\{q_{k} \cdot\left\|q_{k} \alpha\right\|\right\}
$$

If we let $B(\alpha)=\sup \left\{a_{k}: \bar{\alpha}=\left[a_{0} ; a_{1}, \ldots\right]\right\}$, then $($ for $\alpha \in \mathbb{R} \backslash \mathbb{Q})$ we can $k \in \mathbb{N}$
bound $c(\alpha)$ above and below as follows:

$$
\frac{1}{B(\alpha)+2}<c(\alpha)<\frac{1}{B(\alpha)} .
$$

Back to Rational Approximation

Since the convergents of a real number give the best possible rational approximations, for any $\alpha \in \mathbb{R}$ the value of $c(\alpha)$ is minimised by the sequence of convergent denominators $\left\{q_{k}\right\}_{k \in \mathbb{N}}$, i.e.:

$$
c(\alpha):=\inf _{q \in \mathbb{N}}\{q \cdot\|q \alpha\|\}=\inf _{k \in \mathbb{N}}\left\{q_{k} \cdot\left\|q_{k} \alpha\right\|\right\} .
$$

If we let $B(\alpha)=\sup \left\{a_{k}: \bar{\alpha}=\left[a_{0} ; a_{1}, \ldots\right]\right\}$, then $($ for $\alpha \in \mathbb{R} \backslash \mathbb{Q})$ we can $k \in \mathbb{N}$
bound $c(\alpha)$ above and below as follows:

$$
\frac{1}{B(\alpha)+2}<c(\alpha)<\frac{1}{B(\alpha)} .
$$

What we see is that for $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, we have $c(\alpha)=0$ if and only if $B(\alpha)=\infty$.

Back to Rational Approximation

Since the convergents of a real number give the best possible rational approximations, for any $\alpha \in \mathbb{R}$ the value of $c(\alpha)$ is minimised by the sequence of convergent denominators $\left\{q_{k}\right\}_{k \in \mathbb{N}}$, i.e.:

$$
c(\alpha):=\inf _{q \in \mathbb{N}}\{q \cdot\|q \alpha\|\}=\inf _{k \in \mathbb{N}}\left\{q_{k} \cdot\left\|q_{k} \alpha\right\|\right\} .
$$

If we let $B(\alpha)=\sup \left\{a_{k}: \bar{\alpha}=\left[a_{0} ; a_{1}, \ldots\right]\right\}$, then $($ for $\alpha \in \mathbb{R} \backslash \mathbb{Q})$ we can $k \in \mathbb{N}$ bound $c(\alpha)$ above and below as follows:

$$
\frac{1}{B(\alpha)+2}<c(\alpha)<\frac{1}{B(\alpha)} .
$$

What we see is that for $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, we have $c(\alpha)=0$ if and only if $B(\alpha)=\infty$.
As a result, we can redefine the badly approximable numbers to be:

$$
\text { Bad := }\{\alpha \in \mathbb{R} \backslash \mathbb{Q}: B(\alpha)<\infty\}
$$

The p-adic Littlewood Conjecture (pLC)

General Idea: For a real number α, we may have that α is badly approximable.

The p-adic Littlewood Conjecture (pLC)

General Idea: For a real number α, we may have that α is badly approximable. However, given some prime $p, p \alpha$ may give us a better approximation and $p^{2} \alpha$ may give us an even better approximation.

The p-adic Littlewood Conjecture (pLC)

General Idea: For a real number α, we may have that α is badly approximable. However, given some prime $p, p \alpha$ may give us a better approximation and $p^{2} \alpha$ may give us an even better approximation. So we can ask: "For every real number α, can we find a sequence of natural numbers $\left\{\ell_{m}\right\}$ such that the sequence $p^{\ell_{m}} \alpha$ can be arbitrarily well-approximated?"

The p-adic Littlewood Conjecture (pLC)

General Idea: For a real number α, we may have that α is badly approximable. However, given some prime $p, p \alpha$ may give us a better approximation and $p^{2} \alpha$ may give us an even better approximation. So we can ask: "For every real number α, can we find a sequence of natural numbers $\left\{\ell_{m}\right\}$ such that the sequence $p^{\ell_{m}} \alpha$ can be arbitrarily well-approximated?"

The p-adic Littlewood Conjecture (de Mathan and Teulié 2004)

For every real number $\alpha \in \mathbb{R}$, we have:

$$
m_{p}(\alpha):=\inf _{q \in \mathbb{N}}\left\{q \cdot|q|_{p} \cdot\|q \alpha\|\right\}=0
$$

where $|\cdot|_{p}$ is the p-adic norm and $\|\cdot\|$ is the distance to the nearest integer function.

Let $v(q):=\sup \left\{j \in \mathbb{N} \cup\{0\}: p^{j} \mid q\right\}$, then $|q|_{p}=p^{-v(q)}$.

The p-adic Littlewood Conjecture (pLC)

If $\alpha \in \mathbf{B a d}$:

$$
\begin{aligned}
m_{p}(\alpha)=0 & \Longleftrightarrow \inf _{k \in \mathbb{N} \cup\{0\}}\left\{c\left(p^{k} \alpha\right)\right\}=0 \\
& \Longleftrightarrow \sup _{k \in \mathbb{N} \cup\{0\}}\left\{B\left(p^{k} \alpha\right)\right\}=\infty
\end{aligned}
$$

The p-adic Littlewood Conjecture (pLC)

If $\alpha \in \mathbf{B a d}$:

$$
\begin{aligned}
m_{p}(\alpha)=0 & \Longleftrightarrow \inf _{k \in \mathbb{N} \cup\{0\}}\left\{c\left(p^{k} \alpha\right)\right\}=0 \\
& \Longleftrightarrow \sup _{k \in \mathbb{N} \cup\{0\}}\left\{B\left(p^{k} \alpha\right)\right\}=\infty
\end{aligned}
$$

In particular, understanding the behaviour of continued fractions under multiplication by p is intimately tied to pLC.

The p-adic Littlewood Conjecture (pLC)

If $\alpha \in$ Bad:

$$
\begin{aligned}
m_{p}(\alpha)=0 & \Longleftrightarrow \inf _{k \in \mathbb{N} \cup\{0\}}\left\{c\left(p^{k} \alpha\right)\right\}=0 \\
& \Longleftrightarrow \sup _{k \in \mathbb{N} \cup\{0\}}\left\{B\left(p^{k} \alpha\right)\right\}=\infty
\end{aligned}
$$

In particular, understanding the behaviour of continued fractions under multiplication by p is intimately tied to pLC. Sketch:

$$
\begin{aligned}
q \cdot|q|_{p} \cdot\|q \alpha\| & =p^{v(q)} q^{\prime} \cdot p^{-v(q)} \cdot\left\|q^{\prime}\left(p^{v}(q) \alpha\right)\right\| \\
& =q^{\prime} \cdot\left\|q^{\prime}\left(p^{v(q)} \alpha\right)\right\|
\end{aligned}
$$

The p-adic Littlewood Conjecture (pLC)

If $\alpha \in \mathbf{B a d}$:

$$
\begin{aligned}
m_{p}(\alpha)=0 & \Longleftrightarrow \inf _{k \in \mathbb{N} \cup\{0\}}\left\{c\left(p^{k} \alpha\right)\right\}=0 \\
& \Longleftrightarrow \sup _{k \in \mathbb{N} \cup\{0\}}\left\{B\left(p^{k} \alpha\right)\right\}=\infty
\end{aligned}
$$

In particular, understanding the behaviour of continued fractions under multiplication by p is intimately tied to pLC.
Sketch:

$$
\begin{aligned}
q \cdot|q|_{p} \cdot\|q \alpha\| & =p^{v(q)} q^{\prime} \cdot p^{-v(q)} \cdot\left\|q^{\prime}\left(p^{v}(q) \alpha\right)\right\| \\
& =q^{\prime} \cdot\left\|q^{\prime}\left(p^{v(q)} \alpha\right)\right\|
\end{aligned}
$$

The set of counterexamples to pLC are (sometimes) referred to as the multiplicatively badly approximable numbers:

$$
\operatorname{Mad}(p):=\left\{\alpha \in \mathbb{R}: m_{p}(\alpha)=0\right\}
$$

Continued Fraction Arithmetic

- Hall 1947: Given a continued fraction x, described a process for computing:

$$
z(x)=\frac{a x+b}{c x+d}
$$

with $a, b, c, d \in \mathbb{Z}$ and $a d-b c \neq 0$.

Continued Fraction Arithmetic

- Hall 1947: Given a continued fraction x, described a process for computing:

$$
z(x)=\frac{a x+b}{c x+d}
$$

with $a, b, c, d \in \mathbb{Z}$ and $a d-b c \neq 0$.

- Gosper 1972: HAKMEM Given continued fraction expansions for x and y, described a process for computing:

$$
w(x, y)=\frac{a x y+b x+c y+d}{e x y+f x+g y+h}
$$

$a, b, c, d, e, f, g, h \in \mathbb{Z}$

Continued Fraction Arithmetic

- Hall 1947: Given a continued fraction x, described a process for computing:

$$
z(x)=\frac{a x+b}{c x+d}
$$

with $a, b, c, d \in \mathbb{Z}$ and $a d-b c \neq 0$.

- Gosper 1972: HAKMEM Given continued fraction expansions for x and y, described a process for computing:

$$
w(x, y)=\frac{a x y+b x+c y+d}{e x y+f x+g y+h}
$$

$a, b, c, d, e, f, g, h \in \mathbb{Z}$

- Raney 1973: Algorithm for computing automata for $z(x)$ (independent of x).

Continued Fraction Arithmetic

- Hall 1947: Given a continued fraction x, described a process for computing:

$$
z(x)=\frac{a x+b}{c x+d}
$$

with $a, b, c, d \in \mathbb{Z}$ and $a d-b c \neq 0$.

- Gosper 1972: HAKMEM Given continued fraction expansions for x and y, described a process for computing:

$$
w(x, y)=\frac{a x y+b x+c y+d}{e x y+f x+g y+h}
$$

$a, b, c, d, e, f, g, h \in \mathbb{Z}$

- Raney 1973: Algorithm for computing automata for $z(x)$ (independent of x).
- Liardet and Stambul 1998: Algorithm for computing automata for $w(x, y)$ (independent of x and y).

Some Known Results for pLC

Theorem (de Mathan and Teulié 2004)
Every quadratic irrational satisfies pLC.

Some Known Results for pLC

Theorem (de Mathan and Teulié 2004)
Every quadratic irrational satisfies pLC.

Theorem (Einsiedler and Kleinbock 2007)
$\operatorname{Mad}(p)$ has Hausdorff dimension 0.

Some Known Results for pLC

Theorem (de Mathan and Teulié 2004)
Every quadratic irrational satisfies pLC.

Theorem (Einsiedler and Kleinbock 2007)
$\operatorname{Mad}(p)$ has Hausdorff dimension 0.

Theorem (Bugeaud, Drmota and de Mathan 2007)
If the continued fraction expansion of α "limits" to a periodic sequence, then α satisfies $p L C$.

Some Known Results for pLC

Theorem (de Mathan and Teulié 2004)
Every quadratic irrational satisfies pLC.
Theorem (Einsiedler and Kleinbock 2007)
$\operatorname{Mad}(p)$ has Hausdorff dimension 0.
Theorem (Bugeaud, Drmota and de Mathan 2007)
If the continued fraction expansion of α "limits" to a periodic sequence, then α satisfies $p L C$.

Theorem (Badziahin et al. 2015)
If α has an eventually recurrent continued fraction expansion, then α satisfies pLC.

Some Known Results for pLC

Theorem (de Mathan and Teulié 2004)
Every quadratic irrational satisfies pLC.
Theorem (Einsiedler and Kleinbock 2007)
$\operatorname{Mad}(p)$ has Hausdorff dimension 0.
Theorem (Bugeaud, Drmota and de Mathan 2007)
If the continued fraction expansion of α "limits" to a periodic sequence, then α satisfies $p L C$.

Theorem (Badziahin et al. 2015)
If α has an eventually recurrent continued fraction expansion, then α satisfies $p L C$. Additionally, the complexity function of the continued fraction expansion a counterexample must grow sub-exponentially.

Cutting Sequences

Cutting Sequences

Idea: In \mathbb{H} we can encode an oriented geodesic ray ζ based on how it intersects an ideal tessellation T.

Cutting Sequences

Idea: In \mathbb{H} we can encode an oriented geodesic ray ζ based on how it intersects an ideal tessellation T.
If ζ (non-trivially) intersects a triangle, then it either:

Cutting Sequences

Idea: In \mathbb{H} we can encode an oriented geodesic ray ζ based on how it intersects an ideal tessellation T.
If ζ (non-trivially) intersects a triangle, then it either:
(1) Isolates one vertex from the other two vertices.

Cutting Sequences

Idea: In \mathbb{H} we can encode an oriented geodesic ray ζ based on how it intersects an ideal tessellation T.
If ζ (non-trivially) intersects a triangle, then it either:
(1) Isolates one vertex from the other two vertices.

- If the vertex lies to the right of the geodesic, we call it a right triangle.

Cutting Sequences

Idea: In \mathbb{H} we can encode an oriented geodesic ray ζ based on how it intersects an ideal tessellation T.
If ζ (non-trivially) intersects a triangle, then it either:
(1) Isolates one vertex from the other two vertices.

- If the vertex lies to the right of the geodesic, we call it a right triangle.
- Otherwise, the vertex lies to the left and we call it a left triangle.

Cutting Sequences

Idea: In \mathbb{H} we can encode an oriented geodesic ray ζ based on how it intersects an ideal tessellation T.
If ζ (non-trivially) intersects a triangle, then it either:
(1) Isolates one vertex from the other two vertices.

- If the vertex lies to the right of the geodesic, we call it a right triangle.
- Otherwise, the vertex lies to the left and we call it a left triangle.
(2) Terminates at one vertex and separates the other vertices from each other. We can think of this as either a left or a right triangle.

Cutting Sequences

Idea: In \mathbb{H} we can encode an oriented geodesic ray ζ based on how it intersects an ideal tessellation T.
If ζ (non-trivially) intersects a triangle, then it either:
(1) Isolates one vertex from the other two vertices.

- If the vertex lies to the right of the geodesic, we call it a right triangle.
- Otherwise, the vertex lies to the left and we call it a left triangle.
(2) Terminates at one vertex and separates the other vertices from each other. We can think of this as either a left or a right triangle.
The cutting sequence (ζ, T) is then the potentially infinite word over the alphabet $\{L, R\}$ that tracks how ζ intersects each triangle in T.

Examples of left and right triangles

An example of a left triangle.
An example of a right triangle.

An Example of a Cutting Sequence

An example of a geodesic ray ζ_{α} intersecting a (truncated) triangulation T to form a cutting sequence. The cutting sequence starts $R L L R \cdots$.

The Farey Tessellation

The Farey tessellation \mathcal{F} is an ideal triangulation of \mathbb{H}.

The Farey Tessellation

The Farey tessellation \mathcal{F} is an ideal triangulation of \mathbb{H}. The set of vertices are given by: $\mathbb{Q} \cup\left\{\infty=\frac{1}{0}\right\}$.

The Farey Tessellation

The Farey tessellation \mathcal{F} is an ideal triangulation of \mathbb{H}.
The set of vertices are given by: $\mathbb{Q} \cup\left\{\infty=\frac{1}{0}\right\}$.
There is an edge between two vertices $A=\frac{p}{q}$ and $B=\frac{r}{s}$ if we have:

$$
|p s-r q|=1
$$

The Farey Tessellation

The Farey tessellation \mathcal{F} is an ideal triangulation of \mathbb{H}.
The set of vertices are given by: $\mathbb{Q} \cup\left\{\infty=\frac{1}{0}\right\}$.
There is an edge between two vertices $A=\frac{p}{q}$ and $B=\frac{r}{s}$ if we have:

$$
|p s-r q|=1
$$

Important Information about the Farey Tessellation

- The Farey tessellation is preserved by the group $P S L_{2}(\mathbb{Z})$.

Important Information about the Farey Tessellation

- The Farey tessellation is preserved by the group $P S L_{2}(\mathbb{Z})$.
- The edges of \mathcal{F} are covered by the space $P S L_{2}(\mathbb{Z}) \cdot I$, where I is the line between 0 and ∞.

Important Information about the Farey Tessellation

- The Farey tessellation is preserved by the group $P S L_{2}(\mathbb{Z})$.
- The edges of \mathcal{F} are covered by the space $P S L_{2}(\mathbb{Z}) \cdot I$, where I is the line between 0 and ∞.
- Theorem[Series 1985] If ζ_{α} is a geodesic ray starting at I and terminating at a point $\alpha \in \mathbb{R}$, then the cutting sequence $\left(\zeta_{\alpha}, \mathcal{F}\right)$ is equal to the continued fraction expansion $\bar{\alpha}$.

Important Information about the Farey Tessellation

- The Farey tessellation is preserved by the group $P S L_{2}(\mathbb{Z})$.
- The edges of \mathcal{F} are covered by the space $P S L_{2}(\mathbb{Z}) \cdot I$, where I is the line between 0 and ∞.
- Theorem[Series 1985] If ζ_{α} is a geodesic ray starting at I and terminating at a point $\alpha \in \mathbb{R}$, then the cutting sequence $\left(\zeta_{\alpha}, \mathcal{F}\right)$ is equal to the continued fraction expansion $\bar{\alpha}$. In particular, $\left(\zeta_{\alpha}, \mathcal{F}\right)=L^{a_{0}} R^{a_{1}} L^{a_{2}} \cdots$, where $\bar{\alpha}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$.

Important Information about the Farey Tessellation

- The Farey tessellation is preserved by the group $P S L_{2}(\mathbb{Z})$.
- The edges of \mathcal{F} are covered by the space $P S L_{2}(\mathbb{Z}) \cdot I$, where I is the line between 0 and ∞.
- Theorem[Series 1985] If ζ_{α} is a geodesic ray starting at I and terminating at a point $\alpha \in \mathbb{R}$, then the cutting sequence $\left(\zeta_{\alpha}, \mathcal{F}\right)$ is equal to the continued fraction expansion $\bar{\alpha}$. In particular, $\left(\zeta_{\alpha}, \mathcal{F}\right)=L^{a_{0}} R^{a_{1}} L^{a_{2}} \cdots$, where $\bar{\alpha}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$. This is independent on the choice of geodesic ray!

Important Information about the Farey Tessellation

- The Farey tessellation is preserved by the group $P S L_{2}(\mathbb{Z})$.
- The edges of \mathcal{F} are covered by the space $P S L_{2}(\mathbb{Z}) \cdot I$, where I is the line between 0 and ∞.
- Theorem[Series 1985] If ζ_{α} is a geodesic ray starting at I and terminating at a point $\alpha \in \mathbb{R}$, then the cutting sequence $\left(\zeta_{\alpha}, \mathcal{F}\right)$ is equal to the continued fraction expansion $\bar{\alpha}$. In particular, $\left(\zeta_{\alpha}, \mathcal{F}\right)=L^{a_{0}} R^{a_{1}} L^{a_{2}} \cdots$, where $\bar{\alpha}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$. This is independent on the choice of geodesic ray!
- The end points of the edges in \mathcal{F} that ζ_{α} intersects are the semi-convergents of α.

Important Information about the Farey Tessellation

- The Farey tessellation is preserved by the group $P S L_{2}(\mathbb{Z})$.
- The edges of \mathcal{F} are covered by the space $P S L_{2}(\mathbb{Z}) \cdot I$, where I is the line between 0 and ∞.
- Theorem[Series 1985] If ζ_{α} is a geodesic ray starting at I and terminating at a point $\alpha \in \mathbb{R}$, then the cutting sequence $\left(\zeta_{\alpha}, \mathcal{F}\right)$ is equal to the continued fraction expansion $\bar{\alpha}$. In particular, $\left(\zeta_{\alpha}, \mathcal{F}\right)=L^{a_{0}} R^{a_{1}} L^{a_{2}} \cdots$, where $\bar{\alpha}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$. This is independent on the choice of geodesic ray!
- The end points of the edges in \mathcal{F} that ζ_{α} intersects are the semi-convergents of α.
- If ζ_{α} intersects two edges of \mathcal{F} with the same endpoint A, then this endpoint is not just a semi-convergent, but a standard convergent.

An example of a cutting sequence with the Farey tessellation

A truncated image of a geodesic ray ζ_{α} with endpoint $\alpha=\frac{\sqrt{5}-1}{2}$ intersecting the Farey tessellation \mathcal{F} with convergents shown in bold. The cutting sequence is $R L R L \cdots$ and the corresponding continued fraction expansion is $[0 ; 1,1,1, \ldots]$

Integer Multiplication of Continued Fractions and Triangulation Replacement

Triangulation Replacement and Integer Multiplication

Idea: We can understand how multiplication affects continued fraction expansions by understanding how certain triangulation replacements affect cutting sequences.

Triangulation Replacement and Integer Multiplication

Idea: We can understand how multiplication affects continued fraction expansions by understanding how certain triangulation replacements affect cutting sequences.
Let $n^{*}:=\left(\begin{array}{cc}\sqrt{n} & 0 \\ 0 & \frac{1}{\sqrt{n}}\end{array}\right)$, for some $n \in \mathbb{N}$. Then, $n^{*}\left(\zeta_{\alpha}\right)$ starts at I and terminates at $n \alpha$.

Triangulation Replacement and Integer Multiplication

Idea: We can understand how multiplication affects continued fraction expansions by understanding how certain triangulation replacements affect cutting sequences.
Let $n^{*}:=\left(\begin{array}{cc}\sqrt{n} & 0 \\ 0 & \frac{1}{\sqrt{n}}\end{array}\right)$, for some $n \in \mathbb{N}$. Then, $n^{*}\left(\zeta_{\alpha}\right)$ starts at I and terminates at $n \alpha$. As a result, the cutting sequence $\left(n^{*}\left(\zeta_{\alpha}\right), \mathcal{F}\right)$ is equal to the continued fraction expansion of $\overline{n \alpha}$.

Triangulation Replacement and Integer Multiplication

Idea: We can understand how multiplication affects continued fraction expansions by understanding how certain triangulation replacements affect cutting sequences.
Let $n^{*}:=\left(\begin{array}{cc}\sqrt{n} & 0 \\ 0 & \frac{1}{\sqrt{n}}\end{array}\right)$, for some $n \in \mathbb{N}$. Then, $n^{*}\left(\zeta_{\alpha}\right)$ starts at I and terminates at $n \alpha$. As a result, the cutting sequence $\left(n^{*}\left(\zeta_{\alpha}\right), \mathcal{F}\right)$ is equal to the continued fraction expansion of $\overline{n \alpha}$.
Alternatively, one can take $\frac{1}{n} \mathcal{F}:=\left(n^{*}\right)^{-1} \cdot \mathcal{F}$.

Triangulation Replacement and Integer Multiplication

Idea: We can understand how multiplication affects continued fraction expansions by understanding how certain triangulation replacements affect cutting sequences.
Let $n^{*}:=\left(\begin{array}{cc}\sqrt{n} & 0 \\ 0 & \frac{1}{\sqrt{n}}\end{array}\right)$, for some $n \in \mathbb{N}$. Then, $n^{*}\left(\zeta_{\alpha}\right)$ starts at I and terminates at $n \alpha$. As a result, the cutting sequence $\left(n^{*}\left(\zeta_{\alpha}\right), \mathcal{F}\right)$ is equal to the continued fraction expansion of $\overline{n \alpha}$.
Alternatively, one can take $\frac{1}{n} \mathcal{F}:=\left(n^{*}\right)^{-1} \cdot \mathcal{F}$. Since the pair $\left\{\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right\}$ is just a rescaling of the pair $\left\{n^{*}\left(\zeta_{\alpha}\right), \mathcal{F}\right\}$, the cutting sequence $\left(\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right)$ is also equal to $\overline{n \alpha}$.

Triangulation Replacement and Integer Multiplication

Idea: We can understand how multiplication affects continued fraction expansions by understanding how certain triangulation replacements affect cutting sequences.
Let $n^{*}:=\left(\begin{array}{cc}\sqrt{n} & 0 \\ 0 & \frac{1}{\sqrt{n}}\end{array}\right)$, for some $n \in \mathbb{N}$. Then, $n^{*}\left(\zeta_{\alpha}\right)$ starts at I and terminates at $n \alpha$. As a result, the cutting sequence $\left(n^{*}\left(\zeta_{\alpha}\right), \mathcal{F}\right)$ is equal to the continued fraction expansion of $\overline{n \alpha}$.
Alternatively, one can take $\frac{1}{n} \mathcal{F}:=\left(n^{*}\right)^{-1} \cdot \mathcal{F}$. Since the pair $\left\{\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right\}$ is just a rescaling of the pair $\left\{n^{*}\left(\zeta_{\alpha}\right), \mathcal{F}\right\}$, the cutting sequence $\left(\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right)$ is also equal to $\overline{n \alpha}$.
Therefore, replacing \mathcal{F} with $\frac{1}{n} \mathcal{F}$ represents multiplication by n of continued fractions. $\bar{n}:(\cdot, \mathcal{F}) \rightarrow\left(\cdot, \frac{1}{n} \mathcal{F}\right)$.

Triangulation Replacement and Integer Multiplication

Issue: Describing integer multiplication of continued fractions by replacing \mathcal{F} with $\frac{1}{n} \mathcal{F}$ is not very practical.

Triangulation Replacement and Integer Multiplication

Issue: Describing integer multiplication of continued fractions by replacing \mathcal{F} with $\frac{1}{n} \mathcal{F}$ is not very practical.

- To describe this as an actual algorithm, you would have to truncate the cutting sequence, which is likely to introduce computational errors.

Triangulation Replacement and Integer Multiplication

Issue: Describing integer multiplication of continued fractions by replacing \mathcal{F} with $\frac{1}{n} \mathcal{F}$ is not very practical.

- To describe this as an actual algorithm, you would have to truncate the cutting sequence, which is likely to introduce computational errors.
- These computational errors are compounded if you need to do multiple multiplications.

Triangulation Replacement and Integer Multiplication

Issue: Describing integer multiplication of continued fractions by replacing \mathcal{F} with $\frac{1}{n} \mathcal{F}$ is not very practical.

- To describe this as an actual algorithm, you would have to truncate the cutting sequence, which is likely to introduce computational errors.
- These computational errors are compounded if you need to do multiple multiplications.

Solution: We note that \mathcal{F} is preserved by $P S L_{2}(\mathbb{Z})$ and $\frac{1}{n} \mathcal{F}$ is preserved by $\left\{\left(n^{*}\right)^{-1} \circ A \circ n^{*}: A \in P S L_{2}(\mathbb{Z})\right\}$.

Triangulation Replacement and Integer Multiplication

Issue: Describing integer multiplication of continued fractions by replacing \mathcal{F} with $\frac{1}{n} \mathcal{F}$ is not very practical.

- To describe this as an actual algorithm, you would have to truncate the cutting sequence, which is likely to introduce computational errors.
- These computational errors are compounded if you need to do multiple multiplications.

Solution: We note that \mathcal{F} is preserved by $P S L_{2}(\mathbb{Z})$ and $\frac{1}{n} \mathcal{F}$ is preserved by $\left\{\left(n^{*}\right)^{-1} \circ A \circ n^{*}: A \in P S L_{2}(\mathbb{Z})\right\}$.
Therefore, the group

$$
\begin{aligned}
\Gamma_{0}(n): & =\left\{\left(\begin{array}{cc}
a & b \\
c n & d
\end{array}\right) \in P S L_{2}(\mathbb{Z})\right\} \\
& =P S L_{2}(\mathbb{Z}) \cap\left\{\left(n^{*}\right)^{-1} \circ A \circ n^{*}: A \in P S L_{2}(\mathbb{Z})\right\}
\end{aligned}
$$

preserves both \mathcal{F} and $\frac{1}{n} \mathcal{F}$.

Triangulation Replacement and Integer Multiplication

Solution (cont.): We take P_{n} to be a fundamental domain of $\Gamma_{0}(n)$.

Triangulation Replacement and Integer Multiplication

Solution (cont.): We take P_{n} to be a fundamental domain of $\Gamma_{0}(n)$. Then we can take $T_{\{1, n\}}$ to be a copy of P_{n} triangulated by \mathcal{F}, and let $T_{\{n, n\}}$ be P_{n} triangulated by $\frac{1}{n} \mathcal{F}$.

Triangulation Replacement and Integer Multiplication

Solution (cont.): We take P_{n} to be a fundamental domain of $\Gamma_{0}(n)$. Then we can take $T_{\{1, n\}}$ to be a copy of P_{n} triangulated by \mathcal{F}, and let $T_{\{n, n\}}$ be P_{n} triangulated by $\frac{1}{n} \mathcal{F}$.
Since $\Gamma_{0}(n)$ preserves both \mathcal{F} and $\frac{1}{n} \mathcal{F}$ and $\Gamma_{0}(n) \cdot P_{n}=\mathbb{H}$, we can conclude that:

Triangulation Replacement and Integer Multiplication

Solution (cont.): We take P_{n} to be a fundamental domain of $\Gamma_{0}(n)$. Then we can take $T_{\{1, n\}}$ to be a copy of P_{n} triangulated by \mathcal{F}, and let $T_{\{n, n\}}$ be P_{n} triangulated by $\frac{1}{n} \mathcal{F}$.
Since $\Gamma_{0}(n)$ preserves both \mathcal{F} and $\frac{1}{n} \mathcal{F}$ and $\Gamma_{0}(n) \cdot P_{n}=\mathbb{H}$, we can conclude that:

- $\quad \Gamma_{0}(n) \cdot T_{\{1, n\}}=\mathcal{F}$,

Triangulation Replacement and Integer Multiplication

Solution (cont.): We take P_{n} to be a fundamental domain of $\Gamma_{0}(n)$. Then we can take $T_{\{1, n\}}$ to be a copy of P_{n} triangulated by \mathcal{F}, and let $T_{\{n, n\}}$ be P_{n} triangulated by $\frac{1}{n} \mathcal{F}$.
Since $\Gamma_{0}(n)$ preserves both \mathcal{F} and $\frac{1}{n} \mathcal{F}$ and $\Gamma_{0}(n) \cdot P_{n}=\mathbb{H}$, we can conclude that:

- $\Gamma_{0}(n) \cdot T_{\{1, n\}}=\mathcal{F}$,
- $\quad \Gamma_{0}(n) \cdot T_{\{n, n\}}=\frac{1}{n} \mathcal{F}$.

Triangulation Replacement and Integer Multiplication

Solution (cont.): We take P_{n} to be a fundamental domain of $\Gamma_{0}(n)$. Then we can take $T_{\{1, n\}}$ to be a copy of P_{n} triangulated by \mathcal{F}, and let $T_{\{n, n\}}$ be P_{n} triangulated by $\frac{1}{n} \mathcal{F}$.
Since $\Gamma_{0}(n)$ preserves both \mathcal{F} and $\frac{1}{n} \mathcal{F}$ and $\Gamma_{0}(n) \cdot P_{n}=\mathbb{H}$, we can conclude that:

- $\Gamma_{0}(n) \cdot T_{\{1, n\}}=\mathcal{F}$,
- $\quad \Gamma_{0}(n) \cdot T_{\{n, n\}}=\frac{1}{n} \mathcal{F}$.

As a result, replacing $T_{\{1, n\}}$ with $T_{\{n, n\}}$ in P_{n} completely encodes the triangulation replacement of \mathcal{F} and $\frac{1}{n} \mathcal{F}$ in \mathbb{H}.

Triangulation Replacement and Integer Multiplication

Solution (cont.): We take P_{n} to be a fundamental domain of $\Gamma_{0}(n)$. Then we can take $T_{\{1, n\}}$ to be a copy of P_{n} triangulated by \mathcal{F}, and let $T_{\{n, n\}}$ be P_{n} triangulated by $\frac{1}{n} \mathcal{F}$.
Since $\Gamma_{0}(n)$ preserves both \mathcal{F} and $\frac{1}{n} \mathcal{F}$ and $\Gamma_{0}(n) \cdot P_{n}=\mathbb{H}$, we can conclude that:

- $\Gamma_{0}(n) \cdot T_{\{1, n\}}=\mathcal{F}$,
- $\quad \Gamma_{0}(n) \cdot T_{\{n, n\}}=\frac{1}{n} \mathcal{F}$.

As a result, replacing $T_{\{1, n\}}$ with $T_{\{n, n\}}$ in P_{n} completely encodes the triangulation replacement of \mathcal{F} and $\frac{1}{n} \mathcal{F}$ in \mathbb{H}.
A geodesic ray ζ_{α} can then be broken down into subpaths intersecting different copies of P_{n}.

Triangulation Replacement and Integer Multiplication

Solution (cont.): We take P_{n} to be a fundamental domain of $\Gamma_{0}(n)$. Then we can take $T_{\{1, n\}}$ to be a copy of P_{n} triangulated by \mathcal{F}, and let $T_{\{n, n\}}$ be P_{n} triangulated by $\frac{1}{n} \mathcal{F}$.
Since $\Gamma_{0}(n)$ preserves both \mathcal{F} and $\frac{1}{n} \mathcal{F}$ and $\Gamma_{0}(n) \cdot P_{n}=\mathbb{H}$, we can conclude that:

- $\Gamma_{0}(n) \cdot T_{\{1, n\}}=\mathcal{F}$,
- $\quad \Gamma_{0}(n) \cdot T_{\{n, n\}}=\frac{1}{n} \mathcal{F}$.

As a result, replacing $T_{\{1, n\}}$ with $T_{\{n, n\}}$ in P_{n} completely encodes the triangulation replacement of \mathcal{F} and $\frac{1}{n} \mathcal{F}$ in \mathbb{H}.
A geodesic ray ζ_{α} can then be broken down into subpaths intersecting different copies of P_{n}.
An algorithm can be constructed by considering all such paths up to homotopy.

Triangulation Replacement and Integer Multiplication

Solution (cont.): We take P_{n} to be a fundamental domain of $\Gamma_{0}(n)$. Then we can take $T_{\{1, n\}}$ to be a copy of P_{n} triangulated by \mathcal{F}, and let $T_{\{n, n\}}$ be P_{n} triangulated by $\frac{1}{n} \mathcal{F}$.
Since $\Gamma_{0}(n)$ preserves both \mathcal{F} and $\frac{1}{n} \mathcal{F}$ and $\Gamma_{0}(n) \cdot P_{n}=\mathbb{H}$, we can conclude that:

- $\Gamma_{0}(n) \cdot T_{\{1, n\}}=\mathcal{F}$,
- $\quad \Gamma_{0}(n) \cdot T_{\{n, n\}}=\frac{1}{n} \mathcal{F}$.

As a result, replacing $T_{\{1, n\}}$ with $T_{\{n, n\}}$ in P_{n} completely encodes the triangulation replacement of \mathcal{F} and $\frac{1}{n} \mathcal{F}$ in \mathbb{H}.
A geodesic ray ζ_{α} can then be broken down into subpaths intersecting different copies of P_{n}.
An algorithm can be constructed by considering all such paths up to homotopy.
How these subpaths intersect $T_{\{1, n\}}$ and $T_{\{n, n\}}$ determines how ζ_{α} intersects \mathcal{F} and $\frac{1}{n} \mathcal{F}$ and, therefore, how multiplication by n affects the underlying continued fraction $\bar{\alpha}$.

Example of Triangulation Replacement

An example of $T_{\{1,4\}}$.

An example of $T_{\{2,4\}}$.

Example of Triangulation Replacement

\mathbb{H} tessellated by P_{4}.

Example of Triangulation Replacement

\mathbb{H} tessellated by $T_{\{1,4\}}$. This is equivalent to \mathcal{F}.

Example of Triangulation Replacement

\mathbb{H} tessellated by $T_{\{2,4\}}$. This is equivalent to $\frac{1}{2} \mathcal{F}$.

Cutting Sequences on Orbifolds

As an extension, we can view integer multiplication of continued fractions as being equivalent to replacing one triangulation $\widehat{\mathcal{F}}$ on an orbifold $\Gamma_{0}(n) \backslash \mathbb{H}$ with another triangulation $\overline{\frac{1}{n} \mathcal{F}}$.

Cutting Sequences on Orbifolds

As an extension, we can view integer multiplication of continued fractions as being equivalent to replacing one triangulation $\widehat{\mathcal{F}}$ on an orbifold $\Gamma_{0}(n) \backslash \mathbb{H}$ with another triangulation $\overline{\frac{1}{n} \mathcal{F}}$.

Theorem

For every geodesic ray ζ_{α} in \mathbb{H} starting at the y-axis I with endpoint $\alpha>0$, there is a canonical projection $\widehat{\zeta_{\alpha}}$ onto $\Gamma_{0}(n) \backslash \mathbb{H}$ such that $\left(\zeta_{\alpha}, \mathcal{F}\right)=\left(\widehat{\zeta_{\alpha}}, \widehat{\mathcal{F}}\right)$ and $\left(\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right)=\left(\widehat{\zeta_{\alpha}}, \widehat{\frac{1}{n} \mathcal{F}}\right)$.

Cutting Sequences on Orbifolds

As an extension, we can view integer multiplication of continued fractions as being equivalent to replacing one triangulation $\widehat{\mathcal{F}}$ on an orbifold $\Gamma_{0}(n) \mathbb{H}^{\mathbb{H}}$ with another triangulation $\overline{\frac{1}{n} \mathcal{F}}$.

Theorem

For every geodesic ray ζ_{α} in \mathbb{H} starting at the y-axis I with endpoint $\alpha>0$, there is a canonical projection $\widehat{\zeta_{\alpha}}$ onto $\Gamma_{0}(n) \mathbb{H}$ such that $\left(\zeta_{\alpha}, \mathcal{F}\right)=\left(\widehat{\zeta_{\alpha}}, \widehat{\mathcal{F}}\right)$ and $\left(\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right)=\left(\widehat{\zeta_{\alpha}}, \widehat{\frac{1}{n} \mathcal{F}}\right)$.
Since eventually recurrent cutting sequences on $\Gamma_{0}(n) \backslash \mathbb{H}$ do not depend on choice of triangulation, we also can conclude the following:

Cutting Sequences on Orbifolds

As an extension, we can view integer multiplication of continued fractions as being equivalent to replacing one triangulation $\widehat{\mathcal{F}}$ on an orbifold $\Gamma_{0}(n) \mathbb{H}^{H}$ with another triangulation $\overline{\frac{1}{n} \mathcal{F}}$.

Theorem

For every geodesic ray ζ_{α} in \mathbb{H} starting at the y-axis I with endpoint $\alpha>0$, there is a canonical projection $\widehat{\zeta_{\alpha}}$ onto $\Gamma_{0}(n) \backslash \mathbb{H}$ such that $\left(\zeta_{\alpha}, \mathcal{F}\right)=\left(\widehat{\zeta_{\alpha}}, \widehat{\mathcal{F}}\right)$ and $\left(\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right)=\left(\widehat{\zeta_{\alpha}}, \widehat{\frac{1}{n} \mathcal{F}}\right)$.
Since eventually recurrent cutting sequences on $\Gamma_{0}(n) \backslash \mathbb{H}$ do not depend on choice of triangulation, we also can conclude the following:

Corollary

Let $\alpha \in \mathbb{R}$, let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a non-trivial integer matrix (i.e. $a, b, c, d \in \mathbb{Z}$, $a d-b c \neq 0$), and let $\beta=M \cdot \alpha=\frac{a \alpha+b}{c \alpha+d}$. If the continued fraction expansion $\bar{\alpha}$ is eventually recurrent and $c \alpha+d \neq 0$, then the continued fraction $\bar{\beta}$ is eventually recurrent.

Cutting Sequences and the p-adic Littlewood Conjecture

Cutting Sequences and pLC

Since replacing \mathcal{F} with $\frac{1}{n} \mathcal{F}$ induces multiplication by n, it will be useful to look at the "common" structure of \mathcal{F} and $\frac{1}{n} \mathcal{F}$.

Cutting Sequences and pLC

Since replacing \mathcal{F} with $\frac{1}{n} \mathcal{F}$ induces multiplication by n, it will be useful to look at the "common" structure of \mathcal{F} and $\frac{1}{n} \mathcal{F}$.

Lemma

Two points A and B are neighbours in both \mathcal{F} and $\frac{1}{n} \mathcal{F}$ if and only if they have reduced form $\frac{a}{n_{1} c_{1}}$ and $\frac{b}{n_{2} d_{1}}$, with $n=n_{1} n_{2}$ and $\left|a n_{2} d_{1}-b n_{1} c_{1}\right|=1$.

Splitting Cutting Sequences

If a geodesic ray ζ_{α} intersects an edge E in $\mathcal{F} \cap \frac{1}{n} \mathcal{F}$, then we can split ζ_{α} along E to form a geodesic segment $\zeta_{\alpha, 1}$ and a geodesic ray $\zeta_{\alpha, 2}$.

Splitting Cutting Sequences

If a geodesic ray ζ_{α} intersects an edge E in $\mathcal{F} \cap \frac{1}{n} \mathcal{F}$, then we can split ζ_{α} along E to form a geodesic segment $\zeta_{\alpha, 1}$ and a geodesic ray $\zeta_{\alpha, 2}$. Since the initial/final edges of these paths are in $\mathcal{F} \cap \frac{1}{n} \mathcal{F}$, the cutting sequences $\left(\zeta_{\alpha, 1}, \mathcal{F}\right),\left(\zeta_{\alpha, 2}, \mathcal{F}\right),\left(\zeta_{\alpha, 1}, \frac{1}{n} \mathcal{F}\right)$ and $\left(\zeta_{\alpha, 2}, \frac{1}{n} \mathcal{F}\right)$ are all well-defined.

Splitting Cutting Sequences

If a geodesic ray ζ_{α} intersects an edge E in $\mathcal{F} \cap \frac{1}{n} \mathcal{F}$, then we can split ζ_{α} along E to form a geodesic segment $\zeta_{\alpha, 1}$ and a geodesic ray $\zeta_{\alpha, 2}$.
Since the initial/final edges of these paths are in $\mathcal{F} \cap \frac{1}{n} \mathcal{F}$, the cutting sequences $\left(\zeta_{\alpha, 1}, \mathcal{F}\right),\left(\zeta_{\alpha, 2}, \mathcal{F}\right),\left(\zeta_{\alpha, 1}, \frac{1}{n} \mathcal{F}\right)$ and $\left(\zeta_{\alpha, 2}, \frac{1}{n} \mathcal{F}\right)$ are all well-defined. Furthermore:

$$
\left(\zeta_{\alpha}, \mathcal{F}\right)=\left(\zeta_{\alpha, 1}, \mathcal{F}\right) \cdot\left(\zeta_{\alpha, 2}, \mathcal{F}\right)
$$

and

$$
\left(\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right)=\left(\zeta_{\alpha, 1}, \frac{1}{n} \mathcal{F}\right) \cdot\left(\zeta_{\alpha, 2}, \frac{1}{n} \mathcal{F}\right)
$$

Splitting Cutting Sequences

If a geodesic ray ζ_{α} intersects an edge E in $\mathcal{F} \cap \frac{1}{n} \mathcal{F}$, then we can split ζ_{α} along E to form a geodesic segment $\zeta_{\alpha, 1}$ and a geodesic ray $\zeta_{\alpha, 2}$.
Since the initial/final edges of these paths are in $\mathcal{F} \cap \frac{1}{n} \mathcal{F}$, the cutting sequences $\left(\zeta_{\alpha, 1}, \mathcal{F}\right),\left(\zeta_{\alpha, 2}, \mathcal{F}\right),\left(\zeta_{\alpha, 1}, \frac{1}{n} \mathcal{F}\right)$ and $\left(\zeta_{\alpha, 2}, \frac{1}{n} \mathcal{F}\right)$ are all well-defined. Furthermore:

$$
\left(\zeta_{\alpha}, \mathcal{F}\right)=\left(\zeta_{\alpha, 1}, \mathcal{F}\right) \cdot\left(\zeta_{\alpha, 2}, \mathcal{F}\right)
$$

and

$$
\left(\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right)=\left(\zeta_{\alpha, 1}, \frac{1}{n} \mathcal{F}\right) \cdot\left(\zeta_{\alpha, 2}, \frac{1}{n} \mathcal{F}\right) .
$$

If ξ_{α} is any other geodesic ray that starts at I and terminates at α, then it can also be decomposed in the same way.

Splitting Cutting Sequences

If a geodesic ray ζ_{α} intersects an edge E in $\mathcal{F} \cap \frac{1}{n} \mathcal{F}$, then we can split ζ_{α} along E to form a geodesic segment $\zeta_{\alpha, 1}$ and a geodesic ray $\zeta_{\alpha, 2}$.
Since the initial/final edges of these paths are in $\mathcal{F} \cap \frac{1}{n} \mathcal{F}$, the cutting sequences $\left(\zeta_{\alpha, 1}, \mathcal{F}\right),\left(\zeta_{\alpha, 2}, \mathcal{F}\right),\left(\zeta_{\alpha, 1}, \frac{1}{n} \mathcal{F}\right)$ and $\left(\zeta_{\alpha, 2}, \frac{1}{n} \mathcal{F}\right)$ are all well-defined. Furthermore:

$$
\left(\zeta_{\alpha}, \mathcal{F}\right)=\left(\zeta_{\alpha, 1}, \mathcal{F}\right) \cdot\left(\zeta_{\alpha, 2}, \mathcal{F}\right)
$$

and

$$
\left(\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right)=\left(\zeta_{\alpha, 1}, \frac{1}{n} \mathcal{F}\right) \cdot\left(\zeta_{\alpha, 2}, \frac{1}{n} \mathcal{F}\right)
$$

If ξ_{α} is any other geodesic ray that starts at $/$ and terminates at α, then it can also be decomposed in the same way.
In this sense, the map $\left(\zeta_{\alpha, 1}, \mathcal{F}\right) \rightarrow\left(\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right)$ is canonical.

Splitting Cutting Sequences

If a geodesic ray ζ_{α} intersects an edge E in $\mathcal{F} \cap \frac{1}{n} \mathcal{F}$, then we can split ζ_{α} along E to form a geodesic segment $\zeta_{\alpha, 1}$ and a geodesic ray $\zeta_{\alpha, 2}$.
Since the initial/final edges of these paths are in $\mathcal{F} \cap \frac{1}{n} \mathcal{F}$, the cutting sequences $\left(\zeta_{\alpha, 1}, \mathcal{F}\right),\left(\zeta_{\alpha, 2}, \mathcal{F}\right),\left(\zeta_{\alpha, 1}, \frac{1}{n} \mathcal{F}\right)$ and $\left(\zeta_{\alpha, 2}, \frac{1}{n} \mathcal{F}\right)$ are all well-defined. Furthermore:

$$
\left(\zeta_{\alpha}, \mathcal{F}\right)=\left(\zeta_{\alpha, 1}, \mathcal{F}\right) \cdot\left(\zeta_{\alpha, 2}, \mathcal{F}\right)
$$

and

$$
\left(\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right)=\left(\zeta_{\alpha, 1}, \frac{1}{n} \mathcal{F}\right) \cdot\left(\zeta_{\alpha, 2}, \frac{1}{n} \mathcal{F}\right)
$$

If ξ_{α} is any other geodesic ray that starts at $/$ and terminates at α, then it can also be decomposed in the same way.
In this sense, the map $\left(\zeta_{\alpha, 1}, \mathcal{F}\right) \rightarrow\left(\zeta_{\alpha}, \frac{1}{n} \mathcal{F}\right)$ is canonical.
If ζ_{α} doesn't intersect $\mathcal{F} \cap \frac{1}{n} \mathcal{F}$, no canonical map exists.

$\Gamma_{0}(n) \cdot 1$

Since I is an edge of both \mathcal{F} and $\frac{1}{n} \mathcal{F}$ and $\Gamma_{0}(n)$ preserves both \mathcal{F} and $\frac{1}{n} \mathcal{F}$, it follows that $\Gamma_{0}(n) \cdot I \subseteq \mathcal{F} \cap \frac{1}{n} \mathcal{F}$.

$\Gamma_{0}(n) \cdot 1$

Since I is an edge of both \mathcal{F} and $\frac{1}{n} \mathcal{F}$ and $\Gamma_{0}(n)$ preserves both \mathcal{F} and $\frac{1}{n} \mathcal{F}$, it follows that $\Gamma_{0}(n) \cdot I \subseteq \mathcal{F} \cap \frac{1}{n} \mathcal{F}$.
Furthermore, if $n=p^{\ell}$ for p a prime, then $\Gamma_{0}(n) \cdot I=\mathcal{F} \cap \frac{1}{n} \mathcal{F}$.

$\Gamma_{0}(n) \cdot I$

Since I is an edge of both \mathcal{F} and $\frac{1}{n} \mathcal{F}$ and $\Gamma_{0}(n)$ preserves both \mathcal{F} and $\frac{1}{n} \mathcal{F}$, it follows that $\Gamma_{0}(n) \cdot I \subseteq \mathcal{F} \cap \frac{1}{n} \mathcal{F}$.
Furthermore, if $n=p^{\ell}$ for p a prime, then $\Gamma_{0}(n) \cdot I=\mathcal{F} \cap \frac{1}{n} \mathcal{F}$.

Proposition (B. 2023)

If ζ_{α} intersects $\Gamma_{0}(n) \cdot$ I, then there is a tail $\bar{\beta}$ of $\bar{\alpha}$ such that $\overline{n \beta}$ is a tail of $\overline{n \alpha}$.

Infinite Loops mod n

Definition

Let ζ_{α} be a geodesic ray starting at the y-axis I and terminating at the point $\alpha \in \mathbb{R}_{>0}$. Then, ζ_{α} is an infinite loop mod n, if ζ_{α} is disjoint from $\Gamma_{0}(n) \cdot I$ except for the edges of the form $I+k$, for $k \in \mathbb{Z}_{\geq 0}$.

Infinite Loops $\bmod n$

Definition

Let ζ_{α} be a geodesic ray starting at the y-axis I and terminating at the point $\alpha \in \mathbb{R}_{>0}$. Then, ζ_{α} is an infinite loop mod n, if ζ_{α} is disjoint from $\Gamma_{0}(n) \cdot I$ except for the edges of the form $I+k$, for $k \in \mathbb{Z}_{\geq 0}$. Alternatively:
An infinite loop $\bmod n$ is any real number $\alpha \in \mathbb{R}_{>0}$ with no semi-convergent denominators which are by divisible n (other than $q_{-1}=0$).

Infinite Loops $\bmod n$

Definition

Let ζ_{α} be a geodesic ray starting at the y-axis I and terminating at the point $\alpha \in \mathbb{R}_{>0}$. Then, ζ_{α} is an infinite loop mod n, if ζ_{α} is disjoint from $\Gamma_{0}(n) \cdot I$ except for the edges of the form $I+k$, for $k \in \mathbb{Z}_{\geq 0}$. Alternatively:
An infinite loop $\bmod n$ is any real number $\alpha \in \mathbb{R}_{>0}$ with no semi-convergent denominators which are by divisible n (other than $q_{-1}=0$).

Proposition (B. 2023)

If $n \in \mathbb{N}$ and $n \geq 4$, then there exist infinite loops $\bmod n$.

Infinite loops and pLC

If a real number is not an infinite loop mod n then the height function $B(\cdot)$ can not be small for both α and $n \alpha$.

Infinite loops and pLC

If a real number is not an infinite loop mod n then the height function $B(\cdot)$ can not be small for both α and $n \alpha$.

Lemma

Assume that α is not an infinite loop mod n. Then we have:

$$
\max \{B(\alpha), B(n \alpha)\} \geq\lfloor 2 \sqrt{n}\rfloor-1 .
$$

Infinite loops and pLC

If a real number is not an infinite loop mod n then the height function $B(\cdot)$ can not be small for both α and $n \alpha$.

Lemma

Assume that α is not an infinite loop mod n. Then we have:

$$
\max \{B(\alpha), B(n \alpha)\} \geq\lfloor 2 \sqrt{n}\rfloor-1 .
$$

Corollary

Let $\alpha \in$ Bad and assume there is some sequence of natural numbers $\left\{\ell_{m}\right\}_{m \in \mathbb{N}}$ such that $p^{\ell_{m}} \alpha$ is not an infinite loop mod p^{m}. Then α satisfies $p L C$.

Cutting Sequences and pLC

On the other hand, if for some real number α and some natural number m, every value of $p^{\ell} \alpha$ is an infinite loop $\bmod p^{m}$, then $p^{\ell} \alpha$ is a counter-example to pLC .

Cutting Sequences and pLC

On the other hand, if for some real number α and some natural number m, every value of $p^{\ell} \alpha$ is an infinite loop $\bmod p^{m}$, then $p^{\ell} \alpha$ is a counter-example to pLC .

Lemma

Let $\alpha \in \mathbf{B a d}$ and assume there exists an $m \in \mathbb{N}$ such that $p^{\ell} \alpha$ is an infinite loop $\bmod p^{m}$ for all $\ell \in \mathbb{N} \cup\{0\}$. Then α is a counterexample to $p L C$ and $m_{p}(\alpha) \geq \frac{1}{p^{m}}$.

Cutting Sequences and pLC

On the other hand, if for some real number α and some natural number m, every value of $p^{\ell} \alpha$ is an infinite loop $\bmod p^{m}$, then $p^{\ell} \alpha$ is a counter-example to pLC .

Lemma

Let $\alpha \in \mathbf{B a d}$ and assume there exists an $m \in \mathbb{N}$ such that $p^{\ell} \alpha$ is an infinite loop $\bmod p^{m}$ for all $\ell \in \mathbb{N} \cup\{0\}$. Then α is a counterexample to $p L C$ and $m_{p}(\alpha) \geq \frac{1}{p^{m}}$.

Combining these statements together, we get the main theorem of the talk: the following reformulation of pLC in terms of infinite loops mod n.

Theorem (B. 2023)

Let $\alpha \in$ Bad. Then, α satisfies pLC if and only if there is a sequence of natural numbers $\left\{\ell_{m}\right\}_{m \in \mathbb{N}}$ such that $p^{\ell_{m}} \alpha$ is not an infinite loop mod p^{m}.

Thank you for listening. Any questions?

