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Diophantine Approximation

Roughly speaking, the aim of Diophantine approximation is to understand
how efficiently we can approximate real numbers by rational numbers?

I.e.
how well can we approximate a real number α by a rational number p

q
, once

we compensate for the size of the denominator q?
This can be measured by asking “what is the smallest value of c such that

»»»»»»α �
p
q
»»»»»» $

c

q2

has infinitely many solutions for p
q
" Q?”This value is called the Markov

Constant ν�α�.
Alternatively, we can write ν�α� as:

ν�α� �� lim inf
q"N

rq � ½qα½x
where ½ � ½ is the distance to the nearest integer function.
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Diophantine Approximation

If ν�α� � 0, then we say that α is well approximable. Otherwise, we say that
α is badly approximable and we denote the set of all badly approximable
numbers as Bad, i.e.:

Bad �� rα " R � ν�α� % 0x.

Rather than using the Markov constant, in this talk we will use:

c�α� �� inf
q"N

rq � ½qα½x.
NB: c�α� � 0 ¿ ν�α� � 0

Theorem (Hurwitz)

For all α " R ¯Q, we have 0 & c�α� & ν�α� & 1Ó
5
.
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Continued Fractions

Definition

A (simple) continued fraction α is an expression of the form:

α �� a0 �
1

a1 �
1

a2 �
1

. . .

,

where a0 " Z and ai " N for i ' 1.

To simplify notation, we write α �� �a0; a1, a2, . . .�. We refer to the ai ’s as
the partial quotients.
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Convergents of Continued Fractions

Definition

Let α � �a0; a1, a2, . . .� be a continued fraction. We define the k-th con-
vergent of α to be pk

qk
�� �a0; a1, . . . , ak�.

We can define these terms iteratively:

p�1 � 1 p0 � a0 pk � akpk�1 � pk�2

q�1 � 0 q0 � 1 qk � akqk�1 � qk�2

We refer to the term pk as the k-th convergent numerator of α and qk as
the k-th convergent denominator.
Convergents provide us with very good rational approximations of real num-
bers. In fact, the convergents give the best possible rational approximations
of α (in terms of the Markov constant and c�α�).
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Semi-Convergents of Continued Fractions

Definition

Let α � �a0; a1, a2, . . .� be a continued fraction expansion of some real
number α. We define the rk ,mx-th semi-convergent of α to be

prk,mx
qrk,mx

��

�a0; a1, . . . , ak ,m�, where 0 & m & ak�1.

We can also define these iteratively:

prk,mx � mpk � pk�1,

qrk,mx � mqk � qk�1.

We refer to the term prk,mx as the rk,mx-th semi-convergent numerator of
α and qrk,mx as the rk,mx-th semi-convergent denominator.
Semi-convergents also provide us with good rational approximations of real
numbers (but not as good as standard convergents).
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Back to Rational Approximation

Since the convergents of a real number give the best possible rational ap-
proximations, for any α " R the value of c�α� is minimised by the sequence
of convergent denominators rqkxk"N, i.e.:

c�α� �� inf
q"N

rq � ½qα½x � inf
k"N

rqk � ½qkα½x.

If we let B�α� � sup
k"N

rak � α � �a0; a1, . . .�x, then (for α " R ¯ Q) we can

bound c�α� above and below as follows:

1

B�α� � 2
$ c�α� $ 1

B�α� .
What we see is that for α " R ¯ Q, we have c�α� � 0 if and only if
B�α� ��.
As a result, we can redefine the badly approximable numbers to be:

Bad �� rα " R ¯Q � B�α� $�x.
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The p-adic Littlewood Conjecture (pLC)

General Idea: For a real number α, we may have that α is badly approx-
imable.

However, given some prime p, pα may give us a better approxima-
tion and p

2
α may give us an even better approximation. So we can ask:

“For every real number α, can we find a sequence of natural numbers rℓmx
such that the sequence p

ℓmα can be arbitrarily well-approximated?”

The p-adic Littlewood Conjecture (de Mathan and Teulié 2004)

For every real number α " R, we have:

mp�α� �� inf
q"N

sq � ¶q¶p � ½qα½y � 0,

where ¶ � ¶p is the p-adic norm and ½ � ½ is the distance to the nearest
integer function.

Let v�q� �� suprj " N < r0x � pj ¶ qx, then ¶q¶p � p
�v�q�

.
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The p-adic Littlewood Conjecture (pLC)

If α " Bad:

mp�α� � 0 ¿ inf
k"N<r0x

rc�pkα�x � 0

¿ sup
k"N<r0x

rB�pkα�x ��.

In particular, understanding the behaviour of continued fractions under mul-
tiplication by p is intimately tied to pLC.
Sketch:

q � ¶q¶p � ½qα½ � p
v�q�

q
¬
� p

�v�q�
� ½q¬�pv�q�α�½

� q
¬
� ½q¬�pv�q�α�½

The set of counterexamples to pLC are (sometimes) referred to as the mul-
tiplicatively badly approximable numbers:

Mad�p� �� rα " R � mp�α� � 0x.
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Continued Fraction Arithmetic

Hall 1947: Given a continued fraction x , described a process for
computing:

z�x� � ax � b

cx � d

with a, b, c , d " Z and ad � bc j 0.

Gosper 1972: HAKMEM Given continued fraction expansions for x
and y , described a process for computing:

w�x , y� � axy � bx � cy � d

exy � fx � gy � h

a, b, c, d , e, f , g , h " Z
Raney 1973: Algorithm for computing automata for z�x�
(independent of x).

Liardet and Stambul 1998: Algorithm for computing automata for
w�x , y� (independent of x and y).
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Some Known Results for pLC

Theorem (de Mathan and Teulié 2004)

Every quadratic irrational satisfies pLC.

Theorem (Einsiedler and Kleinbock 2007)

Mad�p� has Hausdorff dimension 0.

Theorem (Bugeaud, Drmota and de Mathan 2007)

If the continued fraction expansion of α “limits” to a periodic sequence,
then α satisfies pLC.

Theorem (Badziahin et al. 2015)

If α has an eventually recurrent continued fraction expansion, then α sat-
isfies pLC. Additionally, the complexity function of the continued fraction
expansion a counterexample must grow sub-exponentially.

John Blackman 28
th

March 2024 13 / 37



Some Known Results for pLC

Theorem (de Mathan and Teulié 2004)
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Cutting Sequences
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Cutting Sequences

Idea: In H we can encode an oriented geodesic ray ζ based on how it
intersects an ideal tessellation T .

If ζ (non-trivially) intersects a triangle, then it either:
1 Isolates one vertex from the other two vertices.

Z If the vertex lies to the right of the geodesic, we call it a right triangle.
Z Otherwise, the vertex lies to the left and we call it a left triangle.

2 Terminates at one vertex and separates the other vertices from each
other. We can think of this as either a left or a right triangle.

The cutting sequence �ζ,T � is then the potentially infinite word over the
alphabet rL,Rx that tracks how ζ intersects each triangle in T .
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Examples of left and right triangles

An example of a left triangle. An example of a right triangle.
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An Example of a Cutting Sequence

An example of a geodesic ray ζα intersecting a (truncated) triangulation T
to form a cutting sequence. The cutting sequence starts RLLR�.
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The Farey Tessellation

The Farey tessellation F is an ideal triangulation of H.

The set of vertices are given by: Q < t� �
1
0
z.

There is an edge between two vertices A � p
q
and B �

r
s
if we have:

¶ps � rq¶ � 1.
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Important Information about the Farey Tessellation

The Farey tessellation is preserved by the group PSL2�Z�.

The edges of F are covered by the space PSL2�Z� � I , where I is the
line between 0 and �.

Theorem[Series 1985] If ζα is a geodesic ray starting at I and
terminating at a point α " R, then the cutting sequence (ζα,F� is
equal to the continued fraction expansion α. In particular,
�ζα,F� � L

a0R
a1L

a2
�, where α � �a0; a1, a2, . . .�.This is independent

on the choice of geodesic ray!

The end points of the edges in F that ζα intersects are the
semi-convergents of α.

If ζα intersects two edges of F with the same endpoint A, then this
endpoint is not just a semi-convergent, but a standard convergent.
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An example of a cutting sequence with the Farey
tessellation

A truncated image of a geodesic ray ζα with endpoint α �

Ó
5�1
2

intersecting the
Farey tessellation F with convergents shown in bold. The cutting sequence is
RLRL� and the corresponding continued fraction expansion is �0; 1, 1, 1, . . .�
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Integer Multiplication of Continued Fractions and
Triangulation Replacement
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Triangulation Replacement and Integer Multiplication

Idea: We can understand how multiplication affects continued fraction ex-
pansions by understanding how certain triangulation replacements affect
cutting sequences.

Let n
�
�� � Ó

n 0

0 1Ó
n

, for some n " N. Then, n

��ζα� starts at I and termi-

nates at nα. As a result, the cutting sequence �n��ζα�,F� is equal to the
continued fraction expansion of nα.
Alternatively, one can take 1

n
F �� �n���1 � F . Since the pair rζα, 1nFx is

just a rescaling of the pair rn��ζα�,Fx, the cutting sequence �ζα, 1nF� is
also equal to nα.
Therefore, replacing F with 1

n
F represents multiplication by n of continued

fractions. n � ��,F�� ��, 1
n
F�.

John Blackman 28
th

March 2024 22 / 37



Triangulation Replacement and Integer Multiplication

Idea: We can understand how multiplication affects continued fraction ex-
pansions by understanding how certain triangulation replacements affect
cutting sequences.

Let n
�
�� � Ó

n 0

0 1Ó
n

, for some n " N. Then, n

��ζα� starts at I and termi-

nates at nα.

As a result, the cutting sequence �n��ζα�,F� is equal to the
continued fraction expansion of nα.
Alternatively, one can take 1

n
F �� �n���1 � F . Since the pair rζα, 1nFx is

just a rescaling of the pair rn��ζα�,Fx, the cutting sequence �ζα, 1nF� is
also equal to nα.
Therefore, replacing F with 1

n
F represents multiplication by n of continued

fractions. n � ��,F�� ��, 1
n
F�.

John Blackman 28
th

March 2024 22 / 37



Triangulation Replacement and Integer Multiplication

Idea: We can understand how multiplication affects continued fraction ex-
pansions by understanding how certain triangulation replacements affect
cutting sequences.

Let n
�
�� � Ó

n 0

0 1Ó
n

, for some n " N. Then, n

��ζα� starts at I and termi-

nates at nα. As a result, the cutting sequence �n��ζα�,F� is equal to the
continued fraction expansion of nα.

Alternatively, one can take 1
n
F �� �n���1 � F . Since the pair rζα, 1nFx is

just a rescaling of the pair rn��ζα�,Fx, the cutting sequence �ζα, 1nF� is
also equal to nα.
Therefore, replacing F with 1

n
F represents multiplication by n of continued

fractions. n � ��,F�� ��, 1
n
F�.

John Blackman 28
th

March 2024 22 / 37



Triangulation Replacement and Integer Multiplication

Idea: We can understand how multiplication affects continued fraction ex-
pansions by understanding how certain triangulation replacements affect
cutting sequences.

Let n
�
�� � Ó

n 0

0 1Ó
n

, for some n " N. Then, n

��ζα� starts at I and termi-

nates at nα. As a result, the cutting sequence �n��ζα�,F� is equal to the
continued fraction expansion of nα.
Alternatively, one can take 1

n
F �� �n���1 � F .

Since the pair rζα, 1nFx is

just a rescaling of the pair rn��ζα�,Fx, the cutting sequence �ζα, 1nF� is
also equal to nα.
Therefore, replacing F with 1

n
F represents multiplication by n of continued

fractions. n � ��,F�� ��, 1
n
F�.

John Blackman 28
th

March 2024 22 / 37



Triangulation Replacement and Integer Multiplication

Idea: We can understand how multiplication affects continued fraction ex-
pansions by understanding how certain triangulation replacements affect
cutting sequences.

Let n
�
�� � Ó

n 0

0 1Ó
n

, for some n " N. Then, n

��ζα� starts at I and termi-

nates at nα. As a result, the cutting sequence �n��ζα�,F� is equal to the
continued fraction expansion of nα.
Alternatively, one can take 1

n
F �� �n���1 � F . Since the pair rζα, 1nFx is

just a rescaling of the pair rn��ζα�,Fx, the cutting sequence �ζα, 1nF� is
also equal to nα.

Therefore, replacing F with 1
n
F represents multiplication by n of continued

fractions. n � ��,F�� ��, 1
n
F�.

John Blackman 28
th

March 2024 22 / 37



Triangulation Replacement and Integer Multiplication

Idea: We can understand how multiplication affects continued fraction ex-
pansions by understanding how certain triangulation replacements affect
cutting sequences.

Let n
�
�� � Ó

n 0

0 1Ó
n

, for some n " N. Then, n

��ζα� starts at I and termi-

nates at nα. As a result, the cutting sequence �n��ζα�,F� is equal to the
continued fraction expansion of nα.
Alternatively, one can take 1

n
F �� �n���1 � F . Since the pair rζα, 1nFx is

just a rescaling of the pair rn��ζα�,Fx, the cutting sequence �ζα, 1nF� is
also equal to nα.
Therefore, replacing F with 1

n
F represents multiplication by n of continued

fractions. n � ��,F�� ��, 1
n
F�.

John Blackman 28
th

March 2024 22 / 37



Triangulation Replacement and Integer Multiplication

Issue: Describing integer multiplication of continued fractions by replacing
F with 1

n
F is not very practical.

To describe this as an actual algorithm, you would have to truncate
the cutting sequence, which is likely to introduce computational
errors.

These computational errors are compounded if you need to do
multiple multiplications.

Solution: We note that F is preserved by PSL2�Z� and 1
n
F is preserved by

r�n���1 ` A ` n� � A " PSL2�Z�x.
Therefore, the group

Γ0�n� � � s� a b
cn d � " PSL2�Z�y

� PSL2�Z� = r�n���1 ` A ` n� � A " PSL2�Z�x
preserves both F and 1

n
F .

John Blackman 28
th

March 2024 23 / 37



Triangulation Replacement and Integer Multiplication

Issue: Describing integer multiplication of continued fractions by replacing
F with 1

n
F is not very practical.

To describe this as an actual algorithm, you would have to truncate
the cutting sequence, which is likely to introduce computational
errors.

These computational errors are compounded if you need to do
multiple multiplications.

Solution: We note that F is preserved by PSL2�Z� and 1
n
F is preserved by

r�n���1 ` A ` n� � A " PSL2�Z�x.
Therefore, the group

Γ0�n� � � s� a b
cn d � " PSL2�Z�y

� PSL2�Z� = r�n���1 ` A ` n� � A " PSL2�Z�x
preserves both F and 1

n
F .

John Blackman 28
th

March 2024 23 / 37



Triangulation Replacement and Integer Multiplication

Issue: Describing integer multiplication of continued fractions by replacing
F with 1

n
F is not very practical.

To describe this as an actual algorithm, you would have to truncate
the cutting sequence, which is likely to introduce computational
errors.

These computational errors are compounded if you need to do
multiple multiplications.

Solution: We note that F is preserved by PSL2�Z� and 1
n
F is preserved by

r�n���1 ` A ` n� � A " PSL2�Z�x.
Therefore, the group

Γ0�n� � � s� a b
cn d � " PSL2�Z�y

� PSL2�Z� = r�n���1 ` A ` n� � A " PSL2�Z�x
preserves both F and 1

n
F .

John Blackman 28
th

March 2024 23 / 37



Triangulation Replacement and Integer Multiplication

Issue: Describing integer multiplication of continued fractions by replacing
F with 1

n
F is not very practical.

To describe this as an actual algorithm, you would have to truncate
the cutting sequence, which is likely to introduce computational
errors.

These computational errors are compounded if you need to do
multiple multiplications.

Solution: We note that F is preserved by PSL2�Z� and 1
n
F is preserved by

r�n���1 ` A ` n� � A " PSL2�Z�x.

Therefore, the group

Γ0�n� � � s� a b
cn d � " PSL2�Z�y

� PSL2�Z� = r�n���1 ` A ` n� � A " PSL2�Z�x
preserves both F and 1

n
F .

John Blackman 28
th

March 2024 23 / 37



Triangulation Replacement and Integer Multiplication

Issue: Describing integer multiplication of continued fractions by replacing
F with 1

n
F is not very practical.

To describe this as an actual algorithm, you would have to truncate
the cutting sequence, which is likely to introduce computational
errors.

These computational errors are compounded if you need to do
multiple multiplications.

Solution: We note that F is preserved by PSL2�Z� and 1
n
F is preserved by

r�n���1 ` A ` n� � A " PSL2�Z�x.
Therefore, the group

Γ0�n� � � s� a b
cn d � " PSL2�Z�y

� PSL2�Z� = r�n���1 ` A ` n� � A " PSL2�Z�x
preserves both F and 1

n
F .

John Blackman 28
th

March 2024 23 / 37



Triangulation Replacement and Integer Multiplication

Solution (cont.): We take Pn to be a fundamental domain of Γ0�n�.

Then
we can take Tr1,nx to be a copy of Pn triangulated by F , and let Trn,nx be

Pn triangulated by 1
n
F .

Since Γ0�n� preserves both F and 1
n
F and Γ0�n� �Pn � H, we can conclude

that:

Γ0�n� � Tr1,nx � F ,

Γ0�n� � Trn,nx �
1
n
F .

As a result, replacing Tr1,nx with Trn,nx in Pn completely encodes the tri-

angulation replacement of F and 1
n
F in H.

A geodesic ray ζα can then be broken down into subpaths intersecting dif-
ferent copies of Pn.
An algorithm can be constructed by considering all such paths up to homo-
topy.
How these subpaths intersect Tr1,nx and Trn,nx determines how ζα intersects

F and 1
n
F and, therefore, how multiplication by n affects the underlying

continued fraction α.
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Example of Triangulation Replacement

An example of Tr1,4x. An example of Tr2,4x.
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Example of Triangulation Replacement

H tessellated by P4.
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Example of Triangulation Replacement

H tessellated by Tr1,4x. This is equivalent to F .
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Example of Triangulation Replacement

H tessellated by Tr2,4x. This is equivalent to
1
2
F .
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Cutting Sequences on Orbifolds

As an extension, we can view integer multiplication of continued fractions
as being equivalent to replacing one triangulation sF on an orbifold Γ0�n�⧹H
with another triangulationu1

n
F .

Theorem

For every geodesic ray ζα in H starting at the y -axis I with endpoint α % 0,
there is a canonical projection sζα onto Γ0�n�⧹H such that �ζα,F� � �sζα, sF�
and �ζα, 1nF� � �sζα,u1nF�.
Since eventually recurrent cutting sequences on Γ0�n�⧹H do not depend on
choice of triangulation, we also can conclude the following:

Corollary

Let α " R, let M � � a b
c d � be a non-trivial integer matrix (i.e. a, b, c , d " Z,

ad�bc j 0), and let β � M �α � aα�b
cα�d

. If the continued fraction expansion

α is eventually recurrent and cα � d j 0, then the continued fraction β is
eventually recurrent.
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Cutting Sequences and the p-adic Littlewood
Conjecture
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Cutting Sequences and pLC

Since replacing F with 1
n
F induces multiplication by n, it will be useful to

look at the ”common” structure of F and 1
n
F .

Lemma

Two points A and B are neighbours in both F and 1
n
F if and only if they

have reduced form a
n1c1

and b
n2d1

, with n � n1n2 and ¶an2d1 � bn1c1¶ � 1.
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Splitting Cutting Sequences

If a geodesic ray ζα intersects an edge E in F =
1
n
F , then we can split ζα

along E to form a geodesic segment ζα,1 and a geodesic ray ζα,2.

Since the initial/final edges of these paths are in F =
1
n
F , the cutting se-

quences �ζα,1,F�, �ζα,2,F�, �ζα,1, 1nF� and �ζα,2, 1nF� are all well-defined.
Furthermore:

�ζα,F� � �ζα,1,F� � �ζα,2,F�
and

�ζα, 1nF
 � �ζα,1, 1nF
 � �ζα,2, 1nF
 .

If ξα is any other geodesic ray that starts at I and terminates at α, then it
can also be decomposed in the same way.
In this sense, the map �ζα,1,F�� �ζα, 1nF� is canonical.

If ζα doesn’t intersect F =
1
n
F , no canonical map exists.
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Γ0�n� � I

Since I is an edge of both F and 1
n
F and Γ0�n� preserves both F and 1

n
F ,

it follows that Γ0�n� � I N F =
1
n
F .

Furthermore, if n � p
ℓ
for p a prime, then Γ0�n� � I � F =

1
n
F .

Proposition (B. 2023)

If ζα intersects Γ0�n� � I , then there is a tail β of α such that nβ is a tail
of nα.

John Blackman 28
th

March 2024 33 / 37



Γ0�n� � I

Since I is an edge of both F and 1
n
F and Γ0�n� preserves both F and 1

n
F ,

it follows that Γ0�n� � I N F =
1
n
F .

Furthermore, if n � p
ℓ
for p a prime, then Γ0�n� � I � F =

1
n
F .

Proposition (B. 2023)

If ζα intersects Γ0�n� � I , then there is a tail β of α such that nβ is a tail
of nα.

John Blackman 28
th

March 2024 33 / 37



Γ0�n� � I

Since I is an edge of both F and 1
n
F and Γ0�n� preserves both F and 1

n
F ,

it follows that Γ0�n� � I N F =
1
n
F .

Furthermore, if n � p
ℓ
for p a prime, then Γ0�n� � I � F =

1
n
F .

Proposition (B. 2023)

If ζα intersects Γ0�n� � I , then there is a tail β of α such that nβ is a tail
of nα.

John Blackman 28
th

March 2024 33 / 37



Infinite Loops mod n

Definition

Let ζα be a geodesic ray starting at the y -axis I and terminating at the
point α " R%0. Then, ζα is an infinite loop mod n, if ζα is disjoint from
Γ0�n� � I except for the edges of the form I � k , for k " Z'0.

Alternatively:
An infinite loop mod n is any real number α " R%0 with no semi-convergent
denominators which are by divisible n (other than q�1 � 0).

Proposition (B. 2023)

If n " N and n ' 4, then there exist infinite loops mod n.
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Infinite loops and pLC

If a real number is not an infinite loop mod n then the height function B���
can not be small for both α and nα.

Lemma

Assume that α is not an infinite loop mod n. Then we have:

maxrB�α�,B�nα�x ' �2Ón%�1.
Corollary

Let α " Bad and assume there is some sequence of natural numbers
rℓmxm"N such that p

ℓmα is not an infinite loop mod p
m
. Then α satis-

fies pLC.
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Cutting Sequences and pLC

On the other hand, if for some real number α and some natural number m,
every value of p

ℓ
α is an infinite loop mod p

m
, then p

ℓ
α is a counter-example

to pLC.

Lemma

Let α " Bad and assume there exists an m " N such that p
ℓ
α is an infinite

loop mod p
m

for all ℓ " N < r0x. Then α is a counterexample to pLC and
mp�α� ' 1

pm
.

Combining these statements together, we get the main theorem of the talk:
the following reformulation of pLC in terms of infinite loops mod n.

Theorem (B. 2023)

Let α " Bad. Then, α satisfies pLC if and only if there is a sequence of
natural numbers rℓmxm"N such that p

ℓmα is not an infinite loop mod p
m
.
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Thank you for listening.
Any questions?

John Blackman 28
th

March 2024 37 / 37


	Opening Slide
	The p-adic Littlewood Conjecture (pLC)
	Cutting Sequences
	Integer Multiplication of Continued Fractions and Triangulation Replacement
	Cutting Sequences and the p-adic Littlewood Conjecture
	Appendix
	Thank you for listening.  Any questions?


