Arithmetic and Geometry of Markov Polynomials

Sam Evans
joint work with A.P. Veselov and B. Winn
Loughborough University

27th March, 2024

Markov equation

Markov Diophantine equation

$$
X^{2}+Y^{2}+Z^{2}=3 X Y Z, \quad X, Y, Z \in \mathbb{Z}_{+}
$$

Markov 1880: Every solution can be found from $(1,1,1)$ by

applying Vieta involution
and permutations.

Markov equation

Markov Diophantine equation

$$
X^{2}+Y^{2}+Z^{2}=3 X Y Z, \quad X, Y, Z \in \mathbb{Z}_{+}
$$

Markov 1880: Every solution can be found from $(1,1,1)$ by applying Vieta involution

$$
(X, Y, Z) \rightarrow\left(X, Y, \frac{X^{2}+Y^{2}}{Z}\right)
$$

and permutations.

Generalised Markov equation and Markov polynomials

Generalised Markov equation (Propp et al. 2003)

$$
X^{2}+Y^{2}+Z^{2}=k(x, y, z) X Y Z, \quad k(x, y, z)=\frac{x^{2}+y^{2}+z^{2}}{x y z}
$$

Using the same procedure applied to $(X=x, Y=y, Z=z)$, we
get the solutions, which are Laurent polynomials of the parameters x, y, z. Indeed, we can use the alternative Vieta involution

$$
(X, Y, Z) \rightarrow(X, Y, k(x, y, z) X Y-Z) .
$$

These Laurent polynomials are called Markov polynomials.

Generalised Markov equation and Markov polynomials

Generalised Markov equation (Propp et al. 2003)

$$
X^{2}+Y^{2}+Z^{2}=k(x, y, z) X Y Z, \quad k(x, y, z)=\frac{x^{2}+y^{2}+z^{2}}{x y z}
$$

Using the same procedure applied to ($X=x, Y=y, Z=z$), we get the solutions, which are Laurent polynomials of the parameters x, y, z. Indeed, we can use the alternative Vieta involution

$$
(X, Y, Z) \rightarrow(X, Y, k(x, y, z) X Y-Z)
$$

These Laurent polynomials are called Markov polynomials.

Conway Topograph and Frobenius Correspondence

Frobenius 1913: The Markov numbers can be indexed by the rationals in $[0,1]$.

$$
\rho=\frac{\mathrm{a}}{\mathrm{~b}} \rightarrow \mathrm{~m}_{\rho} \quad \text { (Markov number) }
$$

Conway Topograph and Frobenius Correspondence

Frobenius 1913: The Markov numbers can be indexed by the rationals in $[0,1]$.

$$
\rho=\frac{\mathrm{a}}{\mathrm{~b}} \rightarrow \mathrm{~m}_{\rho} \quad \text { (Markov number) }
$$

Figure: Positive rationals and Markov numbers on the Conway topograpt.

Conway Topograph and Frobenius Correspondence

Geometry of Markov Polynomials

$$
M_{\rho}(x, y, z)=\frac{P_{\rho}(x, y, z)}{Q_{\rho}(x, y, z)}
$$

The denominator of a Markov polynomial corresponding to the rational $\rho=\frac{\mathrm{a}}{\mathrm{b}}$ is $\mathrm{Q}_{\rho}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\chi^{(\mathrm{a}-1)} \mathrm{y}^{(\mathrm{b}-1)} z^{(\mathrm{a}+\mathrm{b}-1)}$

By homogeneity we have

$$
P_{\rho}(x, y, z)=\sum A_{i j} x^{2 i} y^{2 j} z^{2(a+b-1-i-j)}
$$

Propp 2005: Markov polynomials have positive coefficients.
We define the Newton polygon Δ_{ρ} as follows

$$
\Delta_{\rho}=\Delta\left(M_{\rho}\right):=\operatorname{Conv}\left\{(i, j): A_{i j} \neq 0\right\} \subset \mathbb{Z}^{2} .
$$

Geometry of Markov Polynomials

$$
M_{\rho}(x, y, z)=\frac{P_{\rho}(x, y, z)}{Q_{\rho}(x, y, z)}
$$

Theorem 1 (EVW 2024)

The denominator of a Markov polynomial corresponding to the rational $\rho=\frac{\mathrm{a}}{\mathrm{b}}$ is $\mathrm{Q}_{\rho}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{(\mathrm{a}-1)} \mathrm{y}^{(\mathrm{b}-1)} z^{(\mathrm{a}+\mathrm{b}-1)}$.

By homogeneity we have

Propp 2005: Markov polynomials have positive coefficients.
We define the Newton polygon Δ_{ρ} as follows

Geometry of Markov Polynomials

$$
M_{\rho}(x, y, z)=\frac{P_{\rho}(x, y, z)}{Q_{\rho}(x, y, z)}
$$

Theorem 1 (EVW 2024)

The denominator of a Markov polynomial corresponding to the rational $\rho=\frac{\mathrm{a}}{\mathrm{b}}$ is $\mathrm{Q}_{\rho}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{(\mathrm{a}-1)} \mathrm{y}^{(\mathrm{b}-1)} z^{(\mathrm{a}+\mathrm{b}-1)}$.

By homogeneity we have

$$
P_{\rho}(x, y, z)=\sum A_{i j} x^{2 i} y^{2 j} z^{2(a+b-1-i-j)} .
$$

Propp 2005: Markov polynomials have positive coefficients.
We define the Newton polygon Δ_{ρ} as follows

Geometry of Markov Polynomials

$$
M_{\rho}(x, y, z)=\frac{P_{\rho}(x, y, z)}{Q_{\rho}(x, y, z)}
$$

Theorem 1 (EVW 2024)

The denominator of a Markov polynomial corresponding to the rational $\rho=\frac{\mathrm{a}}{\mathrm{b}}$ is $\mathrm{Q}_{\rho}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{(\mathrm{a}-1)} \mathrm{y}^{(\mathrm{b}-1)} z^{(\mathrm{a}+\mathrm{b}-1)}$.

By homogeneity we have

$$
P_{\rho}(x, y, z)=\sum A_{i j} x^{2 i} y^{2 j} z^{2(a+b-1-i-j)} .
$$

Propp 2005: Markov polynomials have positive coefficients.
We define the Newton polygon Δ_{ρ} as follows

Geometry of Markov Polynomials

$$
M_{\rho}(x, y, z)=\frac{P_{\rho}(x, y, z)}{Q_{\rho}(x, y, z)}
$$

Theorem 1 (EVW 2024)

The denominator of a Markov polynomial corresponding to the rational $\rho=\frac{\mathrm{a}}{\mathrm{b}}$ is $\mathrm{Q}_{\rho}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{(\mathrm{a}-1)} \mathrm{y}^{(\mathrm{b}-1)} z^{(\mathrm{a}+\mathrm{b}-1)}$.

By homogeneity we have

$$
P_{\rho}(x, y, z)=\sum A_{i j} x^{2 i} y^{2 j} z^{2(a+b-1-i-j)} .
$$

Propp 2005: Markov polynomials have positive coefficients.
We define the Newton polygon Δ_{ρ} as follows

$$
\left.\Delta_{\rho}=\Delta\left(M_{\rho}\right):=\operatorname{Conv} v(i, j): A_{i j} \neq 0\right\} \subset \mathbb{Z}^{2}
$$

Example:

$$
\rho=\frac{2}{3}, m_{\rho}=29 .
$$

$$
\begin{aligned}
& P_{\rho}(x, y, 1)= \\
& x^{8}+4 x^{6} y^{2}+6 x^{4} y^{4}+4 x^{2} y^{6} \\
& +y^{8}+2 x^{6}+5 x^{4} y^{2} \\
& \quad+4 x^{2} y^{4}+y^{6}+x^{4}
\end{aligned}
$$

Example:

$$
\begin{gathered}
\rho=\frac{2}{3}, m_{\rho}=29 . \\
P_{\rho}(x, y, 1)= \\
x^{8}+4 x^{6} y^{2}+6 x^{4} y^{4}+4 x^{2} y^{6} \\
+y^{8}+2 x^{6}+5 x^{4} y^{2} \\
\\
+4 x^{2} y^{4}+y^{6}+x^{4}
\end{gathered}
$$

Figure: Newton polygon Δ_{ρ}.

Geometry of Newton Polygon

Theorem 2 (EVW 2024)

Given a rational $\rho=\frac{\mathrm{a}}{\mathrm{b}}, \Delta_{\rho}$ is the area (on the ij -plane with $i, j \geqslant 0$) satisfying the conditions

$$
\Delta_{\rho}=\left\{\begin{array}{l}
\frac{i}{a}+\frac{j}{b} \geqslant 1 \\
i+j \leqslant a+b-1
\end{array}\right.
$$

Terms that appear in the numerator of a Markov polynomial M_{ρ} are precisely those corresponding to the set of integer lattice points on Δ_{ρ}.

Geometry of Newton Polygon

Theorem 2 (EVW 2024)

Given a rational $\rho=\frac{\mathrm{a}}{\mathrm{b}}, \Delta_{\rho}$ is the area (on the $\mathfrak{i j}$-plane with $i, j \geqslant 0$) satisfying the conditions

$$
\Delta_{\rho}=\left\{\begin{array}{l}
\frac{i}{a}+\frac{j}{b} \geqslant 1 \\
i+j \leqslant a+b-1
\end{array}\right.
$$

Conjecture 3 (Saturation Conjecture, EVW 2024)

Terms that appear in the numerator of a Markov polynomial M_{ρ} are precisely those corresponding to the set of integer lattice points on Δ_{ρ}.

Figure: 'Weighted' Newton polygon $\Delta_{\rho}, \rho=\frac{2}{3}$.

Weighted Newton Polygon

$$
\begin{aligned}
& \mathrm{P}_{\rho}(x, y, 1)= \\
& x^{8}+4 x^{6} y^{2}+6 x^{4} y^{4}+4 x^{2} y^{6} \\
& \quad+y^{8}+2 x^{6}+5 x^{4} y^{2} \\
& \quad+4 x^{2} y^{4}+y^{6}+x^{4}
\end{aligned}
$$

We define the Markov function on the Newton polygon

$$
\begin{aligned}
\mathcal{M}: \Delta_{\rho} & \rightarrow \mathbb{Z} \\
(i, j) & \mapsto \mathcal{M}((i, j)) .
\end{aligned}
$$

Figure: 'Weighted’ Newton polygon $\Delta_{\rho}, \rho=\frac{2}{3}$.

Coefficients on Newton Polygon Boundary

Theorem 4 (EVW 2024)

Given a rational $\frac{\mathrm{a}}{\mathrm{b}}$ the coefficients on the boundary of the corresponding Markov polynomial's Newton polygon are binomial coefficients. In particular,

Line	Coefficients
$\mathfrak{j}=0$	B_{a-1}
$\mathfrak{i}=0$	B_{b-1}
$\mathfrak{i}+\mathfrak{j}=\mathrm{a}+\mathrm{b}-1$	$\mathrm{~B}_{\mathrm{a}+\mathrm{b}-1}$

where B_{k} denote the kth row of Pascal's triangle.

Coefficients on Newton Polygon Diagonals

Coefficients of second upper-most diagonal of Δ_{ρ}

$$
[2,5,4,1]=[1,3,3,1]+[1,2,1,0]
$$

Coefficients on the 2 nd upper-most diagonal of the Newton polygon of Markov polynomials (the line $i+j=a+b-2$) are

Coefficients on the 3rd upper-most diagonal of the Newton polygon of Markov polynomials (the line $i+j=a+b-3$) are.

Coefficients on Newton Polygon Diagonals

Coefficients of second upper-most diagonal of Δ_{ρ}

$$
[2,5,4,1]=[1,3,3,1]+[1,2,1,0]
$$

Theorem 5 (EVW 2024)

Coefficients on the 2nd upper-most diagonal of the Newton polygon of Markov polynomials (the line $i+j=a+b-2$) are

$$
(a-1) B_{a+b-2}+(b-a) B_{a+b-3} .
$$

Coefficients on the 3rd upper-most diagonal of the Newton polygon of Markov polynomials (the line $i+j=a+b-3$) are:

Coefficients on Newton Polygon Diagonals

Coefficients of second upper-most diagonal of Δ_{ρ}

$$
[2,5,4,1]=[1,3,3,1]+[1,2,1,0]
$$

Theorem 5 (EVW 2024)

Coefficients on the 2nd upper-most diagonal of the Newton polygon of Markov polynomials (the line $i+j=a+b-2$) are

$$
(a-1) B_{a+b-2}+(b-a) B_{a+b-3} .
$$

Theorem 6 (EVW 2024)

Coefficients on the 3rd upper-most diagonal of the Newton polygon of Markov polynomials (the line $i+j=a+b-3$) are:

$$
\begin{aligned}
& \frac{(a-1)(a-2)}{2} B_{a+b-3}+[a(b-a)-a] B_{a+b-4} \\
& \quad+\frac{1}{2}\left[(b-a)^{2}+5 a-3 b\right] B_{a+b-5}
\end{aligned}
$$

Coefficients on Newton Polygon Horizontals

Theorem 7 (EVW 2024)

Coefficients on the $2 n d$ lower-most horizontal of the Newton polygon of Markov polynomials (the line $j=1$) are

$$
(3 a-1) B_{b-2}+(b-2 a) B_{b-3}
$$

Coefficients on Critical Triangle

Figure: 'Weighted' Newton polygon
$\Delta_{\rho}, \rho=\frac{3}{5}\left(m_{\rho}=433\right)$.

Coefficients on Critical Triangle

Conjecture 8 (EVW 2024)

The coefficients of the Markov polynomial $M_{\rho}, \rho=\frac{\mathrm{a}}{\mathrm{b}}$ lying inside the critical triangle of the Newton polygon are all multiples of 4 .

Figure: 'Weighted' Newton polygon
$\Delta_{\rho}, \rho=\frac{3}{5}\left(m_{\rho}=433\right)$.

Markov polynomials M_{ρ}, with $\rho=\frac{1}{n+1}$, are a specialisation of the
Fibonacci polynomials previously studied by Caldero, Zelevinsky (2006).

Markov polynomials M_{ρ}, with $\rho=\frac{1}{n+1}$, are a specialisation of the
Fibonacci polynomials previously studied by Caldero, Zelevinsky (2006).

Corollary 9

The Markov polynomials $M_{\rho}, \rho=\frac{1}{n+1}$ have coefficients

$$
A_{i j}=\binom{n-j}{n+1-i-j}\binom{i+j}{j}
$$

Log-Concavity of Coefficients

A sequence $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is said to be log-concave if it satisfies the property

$$
x_{k}^{2} \geqslant x_{k-1} x_{k+1}
$$

for $k \in\{1,2, \ldots, n-1\}$.

The sequence of coefficients that appear on the 2 nd upper diagonal of the Newton polygon associated to a Markov polynomial is (strictly) log-concave.

Log-Concavity of Coefficients

A sequence $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is said to be log-concave if it satisfies the property

$$
x_{k}^{2} \geqslant x_{k-1} x_{k+1},
$$

for $k \in\{1,2, \ldots, n-1\}$.
Theorem 10 (EVW 2024)
The sequence of coefficients that appear on the 2 nd upper diagonal of the Newton polygon associated to a Markov polynomial is (strictly) log-concave.

Log-Concavity of Coefficients

We say that a weighted lattice is weakly log-concave if the sequence of weights in all principal directions are log-concave.

Log-Concavity of Coefficients

We say that a weighted lattice is weakly log-concave if the sequence of weights in all principal directions are log-concave.

Conjecture 11 (EVW 2024)
Coefficients of Markov polynomials are weakly log-concave.

Log-Concavity of Coefficients

We say that a weighted lattice is weakly log-concave if the sequence of weights in all principal directions are log-concave.

Conjecture 11 (EVW 2024)
Coefficients of Markov polynomials are weakly log-concave.

Theorem 12 (EVW 2024)
The above holds in the case $\rho=\frac{1}{n+1}$.

Klein Diagram for Continued Fractions

Consider $\rho=\frac{5}{3}=[1,1,2]$. Table of convergents:

			1	1	2
p_{k}	0	1	1	2	5
\mathfrak{q}_{k}	1	0	1	1	3

Klein Diagram for Continued Fractions

Consider $\rho=\frac{5}{3}=[1,1,2]$. Table of convergents:

			1	1	2
p_{k}	0	1	1	2	5
q_{k}	1	0	1	1	3

We have sails $A_{0} A_{1} A_{2} \ldots$ and $B_{0} B_{1} B_{2} \ldots$

$$
\begin{aligned}
A_{i} & =\left(q_{2 i-1}, p_{2 i-1}\right) \\
B_{i} & =\left(q_{2 i}, p_{2 i}\right) .
\end{aligned}
$$

In our example,

$$
\begin{aligned}
& A_{0}=(1,0), A_{1}=(1,1), A_{2}=(5,3) \\
& B_{0}=(0,1), B_{1}=(2,1),\left[B_{2}=(5,3)\right]
\end{aligned}
$$

Figure: Klein Diagram for $\rho=\frac{5}{3}$

Duality of Sails

Karpenkov 2014: We have the following Edge-Angle Duality

$$
\begin{aligned}
\operatorname{I\alpha }\left(\angle A_{i} A_{i+1} A_{i+2}\right) & =\operatorname{I\ell }\left(B_{i} B_{i+1}\right) & & \left(=a_{2 i+2}\right), \\
\operatorname{I\alpha }\left(\angle B_{i} B_{i+1} B_{i+2}\right) & =\operatorname{I\ell }\left(A_{i+1} A_{i+2}\right) & & \left(=a_{2 i+3}\right),
\end{aligned}
$$

Markov Sails

$A_{i}:=\left(q_{2 i-1}, b-p_{2 i-1}\right)$,
$B_{i}:=\left(a-q_{2 i}, p_{2 i}\right)$,

Coefficients on the Markov Sail

Conjecture 13 (EVW 2024)

Coefficients on the edge $\mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}+1}$ of the Markov sail are arithmetic progressions with differences $d\left(C_{i} C_{i+1}\right)$ satisfying

$$
d\left(B_{i} B_{i+1}\right)=-\mathcal{M}\left(A_{i+1}\right), \quad d\left(A_{i+1} A_{i+2}\right)=-\mathcal{M}\left(B_{i+1}\right)
$$

Coefficients on the Markov Sail

Conjecture 13 (EVW 2024)

Coefficients on the edge $\mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}+1}$ of the Markov sail are arithmetic progressions with differences $d\left(C_{i} C_{i+1}\right)$ satisfying

$$
d\left(B_{i} B_{i+1}\right)=-\mathcal{M}\left(A_{i+1}\right), \quad d\left(A_{i+1} A_{i+2}\right)=-\mathcal{M}\left(B_{i+1}\right)
$$

Conjecture 14 (EVW 2024)

Consider the continued fraction $\frac{b}{a}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$. If $n=2 m+1$ (odd) then $\mathcal{M}\left(B_{m}\right)=4$. If $n=2 m$ (even) then $\mathcal{M}\left(A_{m}\right)=4$.

Markov Sail Example

$$
\frac{b}{a}=\frac{18}{13}=[1,2,1,1,2]
$$

> Conjecture $14 \Longrightarrow \mathcal{M}\left(B_{2}\right)=4$.

> Now applying Conjecture 13 recursively,
> $\mathcal{M}\left(A_{2}\right)=\mathcal{M}\left(B_{2}\right)+\left(a_{5}-1\right) \mathcal{M}\left(B_{2}\right)=8$ $\mathcal{M}\left(B_{1}\right)=\mathcal{M}\left(B_{2}\right)+a_{4} \mathcal{M}\left(A_{2}\right)=12$ $\mathcal{M}\left(A_{1}\right)=\mathcal{M}\left(A_{2}\right)+a_{3} \mathcal{M}\left(B_{1}\right)=20$.

Markov Sail Example

$$
\frac{b}{a}=\frac{18}{13}=[1,2,1,1,2]
$$

Conjecture $14 \Longrightarrow \mathcal{M}\left(\mathrm{~B}_{2}\right)=4$.
Now applying Conjecture 13 recursively,
 $\mathcal{M}\left(B_{1}\right)=\mathcal{M}\left(B_{2}\right)+a_{4} \mathcal{M}\left(A_{2}\right)=12$ $\mathcal{M}\left(A_{1}\right)=\mathcal{M}\left(A_{2}\right)+a_{3} \mathcal{M}\left(B_{1}\right)=20$.

Markov Sail Example

$$
\frac{b}{a}=\frac{18}{13}=[1,2,1,1,2]
$$

Conjecture $14 \Longrightarrow \mathcal{M}\left(\mathrm{~B}_{2}\right)=4$.
Now applying Conjecture 13 recursively,
$\mathcal{M}\left(A_{2}\right)=\mathcal{M}\left(B_{2}\right)+\left(a_{5}-1\right) \mathcal{M}\left(B_{2}\right)=8$
$\mathcal{M}\left(\mathrm{B}_{1}\right)=\mathcal{M}\left(\mathrm{B}_{2}\right)+\mathrm{a}_{4} \mathcal{M}\left(\mathrm{~A}_{2}\right)=12$
$\mathcal{M}\left(A_{1}\right)=\mathcal{M}\left(A_{2}\right)+a_{3} \mathcal{M}\left(B_{1}\right)=20$.

- A. Itsara, G. Musiker, J. Propp, and R. Viana: Combinatorial interpretations for the Markoff numbers. (2003).
- J. Propp: The combinatorics of frieze patterns and Markoff numbers ArXiv:math/0511633 (2005).
- P. Caldero, A. Zelevinsky: Laurent expansions in cluster algebras via quiver representations. ArXiv:math/0604054 (2006).
- O.N. Karpenkov: Geometry of Continued Fractions (2014).
- S.J. Evans, A.P. Veselov, B. Winn: Arithmetic and Geometry of Markov Polynomials (in preparation).

