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Markov equation

Markov Diophantine equation

X2 + Y2 + Z2 = 3XYZ, X, Y,Z ∈ Z+.

Markov 1880: Every solution can be found from (1, 1, 1) by

applying Vieta involution

(X, Y,Z) →
(
X, Y,

X2 + Y2

Z

)
and permutations.
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Generalised Markov equation and Markov polynomials

Generalised Markov equation (Propp et al. 2003)

X2 + Y2 + Z2 = k(x,y, z)XYZ, k(x,y, z) =
x2 + y2 + z2

xyz

Using the same procedure applied to (X = x, Y = y,Z = z), we

get the solutions, which are Laurent polynomials of the parameters
x,y, z. Indeed, we can use the alternative Vieta involution

(X, Y,Z) → (X, Y,k(x,y, z)XY − Z).

These Laurent polynomials are called Markov polynomials.
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Conway Topograph and Frobenius Correspondence

Frobenius 1913: The Markov numbers can be indexed by the
rationals in [0, 1].

ρ =
a

b
→ mρ (Markov number)

1
0 ↔ 10

1 ↔ 1

1
1 ↔ 21

2 ↔ 5

2
3 ↔ 29

1
3 ↔ 13

3
4 ↔ 169

3
5 ↔ 433

2
5 ↔ 194

1
4 ↔ 34

1

Figure: Positive rationals and Markov numbers on the Conway topograph.
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Conway Topograph and Frobenius Correspondence
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Geometry of Markov Polynomials

Mρ(x,y, z) =
Pρ(x,y, z)

Qρ(x,y, z)

Theorem 1 (EVW 2024)

The denominator of a Markov polynomial corresponding to the
rational ρ = a

b is Qρ(x,y, z) = x(a−1)y(b−1)z(a+b−1).

By homogeneity we have

Pρ(x,y, z) =
∑

Aijx
2iy2jz2(a+b−1−i−j).

Propp 2005: Markov polynomials have positive coefficients.

We define the Newton polygon ∆ρ as follows

∆ρ = ∆(Mρ) := Conv{(i, j) : Aij ̸= 0} ⊂ Z2.
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Newton Polygon Example
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Figure: Newton polygon ∆ρ.

Example:

ρ =
2

3
, mρ = 29.

Pρ(x,y, 1) =

x8 + 4x6y2 + 6x4y4 + 4x2y6

+ y8 + 2x6 + 5x4y2

+ 4x2y4 + y6 + x4
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Geometry of Newton Polygon

Theorem 2 (EVW 2024)

Given a rational ρ = a
b , ∆ρ is the area (on the ij-plane with

i, j ⩾ 0) satisfying the conditions

∆ρ =


i

a
+

j

b
⩾ 1

i+ j ⩽ a+ b− 1

Conjecture 3 (Saturation Conjecture, EVW 2024)

Terms that appear in the numerator of a Markov polynomial Mρ

are precisely those corresponding to the set of integer lattice points
on ∆ρ.
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Weighted Newton Polygon
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Figure: ‘Weighted’ Newton polygon
∆ρ, ρ = 2

3 .

Pρ(x,y, 1) =

x8 + 4x6y2 + 6x4y4 + 4x2y6

+ y8 + 2x6 + 5x4y2

+ 4x2y4 + y6 + x4

We define the Markov function
on the Newton polygon

M : ∆ρ → Z
(i, j) 7→ M((i, j)).

Sam Evans Markov Polynomials



newlogo

Weighted Newton Polygon

1

4

6

4

1

2

5

4

1

1
43210

4

3

2

1

0

j

i

Figure: ‘Weighted’ Newton polygon
∆ρ, ρ = 2

3 .

Pρ(x,y, 1) =

x8 + 4x6y2 + 6x4y4 + 4x2y6

+ y8 + 2x6 + 5x4y2

+ 4x2y4 + y6 + x4

We define the Markov function
on the Newton polygon

M : ∆ρ → Z
(i, j) 7→ M((i, j)).

Sam Evans Markov Polynomials



newlogo

Coefficients on Newton Polygon Boundary

Theorem 4 (EVW 2024)

Given a rational a
b the coefficients on the boundary of the

corresponding Markov polynomial’s Newton polygon are binomial
coefficients. In particular,

Line Coefficients

j = 0 Ba−1

i = 0 Bb−1

i+ j = a+ b− 1 Ba+b−1

where Bk denote the kth row of Pascal’s triangle.

Sam Evans Markov Polynomials
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Coefficients on Newton Polygon Diagonals

Coefficients of second upper-most diagonal of ∆ρ

[2, 5, 4, 1] = [1, 3, 3, 1] + [1, 2, 1, 0]

Theorem 5 (EVW 2024)

Coefficients on the 2nd upper-most diagonal of the Newton
polygon of Markov polynomials (the line i+ j = a+ b− 2) are

(a− 1)Ba+b−2 + (b− a)Ba+b−3.

Theorem 6 (EVW 2024)

Coefficients on the 3rd upper-most diagonal of the Newton
polygon of Markov polynomials (the line i+ j = a+ b− 3) are:

(a− 1)(a− 2)

2
Ba+b−3 + [a(b− a) − a]Ba+b−4

+
1

2
[(b− a)2 + 5a− 3b]Ba+b−5.

Sam Evans Markov Polynomials
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Coefficients on Newton Polygon Horizontals

Theorem 7 (EVW 2024)

Coefficients on the 2nd lower-most horizontal of the Newton
polygon of Markov polynomials (the line j = 1) are

(3a− 1)Bb−2 + (b− 2a)Bb−3.
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Coefficients on Critical Triangle
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Figure: ‘Weighted’ Newton polygon
∆ρ, ρ = 3

5 (mρ = 433).

Conjecture 8 (EVW 2024)

The coefficients of the Markov
polynomial Mρ, ρ = a

b lying
inside the critical triangle of the
Newton polygon are all multiples
of 4.

Sam Evans Markov Polynomials



newlogo

Coefficients on Critical Triangle

1

7

21

35

35

21

7

1

4

22

50

60

40

14

2

6

23

34

24

8

1

4

8

4

1
76543210

7

6

5

4

3

2

1

0

j

i

Figure: ‘Weighted’ Newton polygon
∆ρ, ρ = 3

5 (mρ = 433).

Conjecture 8 (EVW 2024)

The coefficients of the Markov
polynomial Mρ, ρ = a

b lying
inside the critical triangle of the
Newton polygon are all multiples
of 4.

Sam Evans Markov Polynomials



newlogo

Fibonacci Polynomials

Markov polynomials Mρ, with ρ = 1
n+1 , are a specialisation of the

Fibonacci polynomials previously studied by Caldero, Zelevinsky
(2006).

Corollary 9

The Markov polynomials Mρ, ρ = 1
n+1 have coefficients

Aij =

(
n− j

n+ 1− i− j

)(
i+ j

j

)
.
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Log-Concavity of Coefficients

A sequence x = (x0, x1, . . . , xn) is said to be log-concave if it
satisfies the property

x2k ⩾ xk−1xk+1,

for k ∈ {1, 2, . . . ,n− 1}.

Theorem 10 (EVW 2024)

The sequence of coefficients that appear on the 2nd upper
diagonal of the Newton polygon associated to a Markov
polynomial is (strictly) log-concave.
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Log-Concavity of Coefficients

We say that a weighted lattice is weakly log-concave if the
sequence of weights in all principal directions are log-concave.

Conjecture 11 (EVW 2024)

Coefficients of Markov polynomials are weakly log-concave.
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Klein Diagram for Continued Fractions

Consider ρ = 5
3 = [1, 1, 2]. Table

of convergents:

1 1 2

pk 0 1 1 2 5
qk 1 0 1 1 3

We have sails A0A1A2 . . . and
B0B1B2 . . .

Ai = (q2i−1,p2i−1),

Bi = (q2i,p2i).

In our example,

A0 = (1, 0),A1 = (1, 1),A2 = (5, 3)

B0 = (0, 1),B1 = (2, 1), [B2 = (5, 3)]

A0

A1

A2

B0

B1

3210

5

4

3

2

1

0

Figure: Klein Diagram for ρ = 5
3
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Duality of Sails

Karpenkov 2014: We have the following Edge-Angle Duality

lα(∠AiAi+1Ai+2) = lℓ(BiBi+1) (= a2i+2),

lα(∠BiBi+1Bi+2) = lℓ(Ai+1Ai+2) (= a2i+3),

Sam Evans Markov Polynomials
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Markov Sails

B0

B1

A1

A0

3210

5

4

3

2

1

0

Ai := (q2i−1,b− p2i−1), Bi := (a− q2i,p2i),
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Coefficients on the Markov Sail

Conjecture 13 (EVW 2024)

Coefficients on the edge CiCi+1 of the Markov sail are arithmetic
progressions with differences d(CiCi+1) satisfying

d(BiBi+1) = −M(Ai+1), d(Ai+1Ai+2) = −M(Bi+1).

Conjecture 14 (EVW 2024)

Consider the continued fraction b
a = [a1,a2, . . . ,an]. If

n = 2m+ 1 (odd) then M(Bm) = 4. If n = 2m (even) then
M(Am) = 4.

Sam Evans Markov Polynomials
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Markov Sail Example

b

a
=

18

13
= [1, 2, 1, 1, 2]

Conjecture 14 =⇒ M(B2) = 4.

Now applying Conjecture 13
recursively,

M(A2) = M(B2) + (a5 − 1)M(B2) = 8

M(B1) = M(B2) + a4M(A2) = 12

M(A1) = M(A2) + a3M(B1) = 20.

B0

B1

B2

A0

A1

A2

1312118310

18

17

14

7

3

2

1

0
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