Continued Fraction approach to Gauss-Reduction theory

Oleg Karpenkov, University of Liverpool

28 March 2024

Contents

I. Gauss Reduction Theory.
II. Geometry of continued fractions.
III. Techniques to compute reduced matrices explicitly.

Contents

I. Gauss Reduction Theory.

II. Geometry of continued fractions.
III. Techniques to compute reduced matrices explicitly.

Φ Springer

I. Gauss Reduction Theory

Formulation of a problem

Operators A and B are conjugate if there exists X such that

$$
B=X A X^{-1 .}
$$

Formulation of a problem

Operators A and B are conjugate if there exists X such that

$$
B=X A X^{-1}
$$

Problem
Describe conjugacy classes in $\operatorname{SL}(2, \mathbb{Z})$.

Formulation of a problem

Operators A and B are conjugate if there exists X such that

$$
B=X A X^{-1}
$$

Problem
Describe conjugacy classes in $S L(2, \mathbb{Z})$.

Strategy: find normal forms.

Formulation of a problem

Operators A and B are conjugate if there exists X such that

$$
B=X A X^{-1}
$$

Problem
Describe conjugacy classes in $S L(2, \mathbb{Z})$.

Strategy: find normal forms.

Example

In the classical case of algebraically closed field any matrix is conjugate to Jordan normal form. The set of Jordan blocks is the complete invariant of a conjugacy class.

Formulation of a problem

Operators A and B are conjugate if there exists X such that

$$
B=X A X^{-1}
$$

Problem
Describe conjugacy classes in $\operatorname{SL}(2, \mathbb{Z})$.

To be more precise, we deal with $\operatorname{PSL}(2, \mathbb{Z})$.
Problem
Describe explicitly conjugacy classes in $\operatorname{PSL}(2, \mathbb{Z})$. Here $A \sim-A$.

Current situation of the question

Gauss Reduction theory: $S L(2, \mathbb{Z}) \rightarrow$ complete invariant \rightarrow "almost" normal form.

Current situation of the question

Gauss Reduction theory: $S L(2, \mathbb{Z}) \rightarrow$ complete invariant \rightarrow "almost" normal form.

In this presentation we show how to explicitly describe these "almost" normal forms.

The case of $S L(2, \mathbb{Z})$

- complex case: $\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, and $\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$.
- totally real case: Gauss Reduction Theory
- degenerate case of double roots: $\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)$ for $n \geq 0$.

Continued fractions for $7 / 5$

$\frac{7}{5}=$

Continued fractions for $7 / 5$

$$
\frac{7}{5}=1+\frac{2}{5}
$$

Continued fractions for $7 / 5$

$$
\frac{7}{5}=1+\frac{1}{5 / 2}
$$

Continued fractions for $7 / 5$

$$
\frac{7}{5}=1+\frac{1}{2+\frac{1}{2}}
$$

Continued fractions for $7 / 5$

$$
\frac{7}{5}=1+\frac{1}{2+\frac{1}{2}}=1+\frac{1}{2+\frac{1}{1+\frac{1}{1}}}
$$

Ordinary continued fractions

The expression (finite or infinite)

$$
\left.a_{0}+1 /\left(a_{1}+1 /\left(a_{2}+\ldots\right) \ldots\right)\right)
$$

is an ordinary continued fraction if $a_{0} \in \mathbb{Z}, a_{k} \in \mathbb{Z}_{+}$for $k>0$. Denote it $\left[a_{0}: a_{1} ; \ldots\right]$ (or $\left.\left[a_{0}: a_{1} ; \ldots ; a_{n}\right]\right)$.

Ordinary continued fractions

The expression (finite or infinite)

$$
\left.a_{0}+1 /\left(a_{1}+1 /\left(a_{2}+\ldots\right) \ldots\right)\right)
$$

is an ordinary continued fraction if $a_{0} \in \mathbb{Z}, a_{k} \in \mathbb{Z}_{+}$for $k>0$. Denote it $\left[a_{0}: a_{1} ; \ldots\right]$ (or $\left.\left[a_{0}: a_{1} ; \ldots ; a_{n}\right]\right)$.

Ordinary continued fraction is odd (even) if it has odd (even) number of elements.

$$
\begin{gathered}
\frac{7}{5}=1+\frac{1}{2+\frac{1}{2}}=1+\frac{1}{2+\frac{1}{1+1 / 1}} \\
\frac{7}{5}=[1: 2 ; 2]=[1: 2 ; 1 ; 1]
\end{gathered}
$$

Ordinary continued fractions

The expression (finite or infinite)

$$
\left.a_{0}+1 /\left(a_{1}+1 /\left(a_{2}+\ldots\right) \ldots\right)\right)
$$

is an ordinary continued fraction if $a_{0} \in \mathbb{Z}, a_{k} \in \mathbb{Z}_{+}$for $k>0$. Denote it $\left[a_{0}: a_{1} ; \ldots\right]\left(\right.$ or $\left.\left[a_{0}: a_{1} ; \ldots ; a_{n}\right]\right)$.

Ordinary continued fraction is odd (even) if it has odd (even) number of elements.

Proposition

Any rational number has a unique odd and even ordinary continued fractions.
Any irrational number has a unique infinite ordinary continued fraction

The totally real case of $S L(2, \mathbb{Z})$

Eigenlines of an operator $\left(\begin{array}{ll}7 & 18 \\ 5 & 13\end{array}\right)$.

The totally real case of $S L(2, \mathbb{Z})$

The sail for one of the octants, i.e. the boundary of the convex hull of all integer inner points.

The totally real case of $S L(2, \mathbb{Z})$

The set of all sails is called geometric continued fraction (in the sense of Klein).

The totally real case of $S L(2, \mathbb{Z})$

Integer length of a segment is the number of integer inner points in a segment plus one.

The totally real case of $S L(2, \mathbb{Z})$

Integer angle is the index of the sublattice generated by points of the edges of the angle in the lattice of integer points.

The totally real case of $S L(2, \mathbb{Z})$

Geometric continued fraction for the operator $\left(\begin{array}{rr}7 & 18 \\ 5 & 13\end{array}\right)$.

The totally real case of $S L(2, \mathbb{Z})$

In the case of $S L(2, \mathbb{Z})$ operators the sequences for the sails are periodic.
For instance, for $\left(\begin{array}{ll}7 & 18 \\ 5 & 13\end{array}\right)$ the period is: $(1,1,3,2)$.

The totally real case of $S L(2, \mathbb{Z})$

Theorem
A period (up to a shift) is a complete invariant of a conjugacy class of an operator in $S L(2, \mathbb{Z})$.

The totally real case of $S L(2, \mathbb{Z})$

Definition
An operator $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is reduced if $d>b \geq a \geq 0$.

The totally real case of $S L(2, \mathbb{Z})$

Definition
An operator $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is reduced if $d>b \geq a \geq 0$.
Theorem
The number of reduced matrices in a conjugacy class with minimal period $\left(a_{1}, \ldots, a_{k}\right)$ is k.

The totally real case of $S L(2, \mathbb{Z})$

Definition

An operator $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is reduced if $d>b \geq a \geq 0$.
Theorem
The number of reduced matrices in a conjugacy class with minimal period $\left(a_{1}, \ldots, a_{k}\right)$ is k.

Theorem
If $A \in S L(2, \mathbb{Z})$: take even continued fraction for $\frac{d}{c}$;

The totally real case of $S L(2, \mathbb{Z})$

Definition
An operator $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is reduced if $d>b \geq a \geq 0$.
Theorem
The number of reduced matrices in a conjugacy class with minimal period $\left(a_{1}, \ldots, a_{k}\right)$ is k.

Theorem
If $A \in S L(2, \mathbb{Z})$: take even continued fraction for $\frac{d}{c}$;
If $A \in G L(2, \mathbb{Z}) \backslash S L(2, \mathbb{Z})$: take odd continued fraction for $\frac{d}{c}$.

The totally real case of $S L(2, \mathbb{Z})$

Definition

An operator $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is reduced if $d>b \geq a \geq 0$.
Theorem
The number of reduced matrices in a conjugacy class with minimal period $\left(a_{1}, \ldots, a_{k}\right)$ is k.

Theorem
If $A \in S L(2, \mathbb{Z})$: take even continued fraction for $\frac{d}{c}$;
If $A \in G L(2, \mathbb{Z}) \backslash S L(2, \mathbb{Z})$: take odd continued fraction for $\frac{d}{c}$. Let

$$
d / c=\left[a_{1} ; \ldots: a_{n}\right] .
$$

The totally real case of $S L(2, \mathbb{Z})$

Definition

An operator $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is reduced if $d>b \geq a \geq 0$.
Theorem
The number of reduced matrices in a conjugacy class with minimal period $\left(a_{1}, \ldots, a_{k}\right)$ is k.

Theorem
If $A \in S L(2, \mathbb{Z})$: take even continued fraction for $\frac{d}{c}$;
If $A \in G L(2, \mathbb{Z}) \backslash S L(2, \mathbb{Z})$: take odd continued fraction for $\frac{d}{c}$.
Let

$$
d / c=\left[a_{1} ; \ldots: a_{n}\right] .
$$

Then one of the periods of geometric continued fraction is

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

The totally real case of $S L(2, \mathbb{Z})$

Example

For the operator $\left(\begin{array}{cc}1519 & 1164 \\ -1964 & -1505\end{array}\right)$ the period is $(1,2,1,2)$.
Hence minimal period is $(1,2)$.
The reduced operators conjugate to the given one are: $\left(\begin{array}{cc}3 & 8 \\ 4 & 11\end{array}\right)$ and $\left(\begin{array}{cc}3 & 4 \\ 8 & 11\end{array}\right)$.

The totally real case of $S L(2, \mathbb{Z})$

Example
For the operator $\left(\begin{array}{cc}1519 & 1164 \\ -1964 & -1505\end{array}\right)$ the period is $(1,2,1,2)$.
Hence minimal period is $(1,2)$.
The reduced operators conjugate to the given one are: $\left(\begin{array}{cc}3 & 8 \\ 4 & 11\end{array}\right)$ and $\left(\begin{array}{cc}3 & 4 \\ 8 & 11\end{array}\right)$.

Question: How to compute a period for $G L(2, \mathbb{Z})$ matrics?

Part II.

II. Geometry of continued fractions.

Geometry of continued fractions

$$
\begin{aligned}
& a_{0}=l \ell\left(A_{0} A_{1}\right)=1 ; \\
& a_{1}=\operatorname{lsin}\left(A_{0} A_{1} A_{2}\right)=2 ; \\
& a_{2}=l\left(A_{1} A_{2}\right)=2 .
\end{aligned}
$$

$$
7 / 5=[1 ; 2: 2]
$$

$\left(a_{0}, \ldots, a_{2 n}\right)$ - lattice length-sine sequence (LLS-sequence).

Integer geometry

Integer geometry

Objects: Integer segments, integer angles, integer polygons.

Integer geometry

Objects: Integer segments, integer angles, integer polygons.

Transformations: Integer lattice preserving affine transformations in the plane.

$$
\left(A f f(2, \mathbb{Z})=G L(2, \mathbb{Z}) \rtimes \mathbb{Z}^{2}\right)
$$

Integer trigonometry (O.K. '08)

LLS-sequence for an arbitrary angle

Integer trigonometry (O.K. '08)

Theorem

LLS-sequence is a complete invariant of integer angles in integer geometry.

Integer trigonometry (O.K. '08)

Definition

Let $\left(a_{0}, \ldots, a_{2 n}\right)$ be the LLS-sequence of α, then $\operatorname{ltan} \alpha=\left[a_{0}: \ldots: a_{2 n}\right]$.

Integer trigonometry (O.K. '08)

$$
\operatorname{Itan} A O B=[1: 2 ; 2]=\frac{7}{5} \Longrightarrow\left\{\begin{array}{l}
\sin A O B=7 \\
\operatorname{los} A O B=5
\end{array}\right.
$$

Part III.

III. Techniques to compute reduced matrices explicitly.

How to compute the LLS of a rational angle (O.K. '21)

LLS-sequence for an arbitrary angle

How to compute the LLS of a rational angle (O.K. '21)

LLS-sequence for an arbitrary angle

How to compute the LLS of a rational angle?

How to compute the LLS of a rational angle (O.K. '21)

Theorem
Given integer $A=(p, q)$ and $B=(r, s)$ with non-zero entry.

How to compute the LLS of a rational angle (O.K. '21)

Theorem
Given integer $A=(p, q)$ and $B=(r, s)$ with non-zero entry. W.I.o.g. $\operatorname{det}(O A, O B)<0 ; p, q, r, s>0$ (other cases similar).

How to compute the LLS of a rational angle (O.K. '21)

Theorem
Given integer $A=(p, q)$ and $B=(r, s)$ with non-zero entry. W.I.o.g. $\operatorname{det}(O A, O B)<0 ; p, q, r, s>0$ (other cases similar).

Let

$$
\begin{aligned}
& |q / p|=\left[a_{0} ; a_{1}: \ldots: a_{2 m}\right], \\
& |s / r|=\left[b_{0} ; b_{1}: \ldots: b_{2 n}\right] .
\end{aligned}
$$

How to compute the LLS of a rational angle (O.K. '21)

Theorem

Given integer $A=(p, q)$ and $B=(r, s)$ with non-zero entry. W.I.o.g. $\operatorname{det}(O A, O B)<0 ; p, q, r, s>0$ (other cases similar).

Let

$$
\begin{aligned}
& |q / p|=\left[a_{0} ; a_{1}: \ldots: a_{2 m}\right] \\
& |s / r|=\left[b_{0} ; b_{1}: \ldots: b_{2 n}\right] .
\end{aligned}
$$

Denote also

$$
\alpha=\left|\left[-a_{2 m}:-a_{2 m-1}: \cdots:-a_{1}:-a_{0}: 0: b_{0}: b_{1}: \cdots: b_{2 n}\right]\right|
$$

How to compute the LLS of a rational angle (O.K. '21)

Theorem

Given integer $A=(p, q)$ and $B=(r, s)$ with non-zero entry. W.I.o.g. $\operatorname{det}(O A, O B)<0 ; p, q, r, s>0$ (other cases similar).

Let

$$
\begin{aligned}
& |q / p|=\left[a_{0} ; a_{1}: \ldots: a_{2 m}\right] \\
& |s / r|=\left[b_{0} ; b_{1}: \ldots: b_{2 n}\right] .
\end{aligned}
$$

Denote also

$$
\begin{aligned}
\alpha & =\left|\left[-a_{2 m}:-a_{2 m-1}: \cdots:-a_{1}:-a_{0}: 0: b_{0}: b_{1}: \cdots: b_{2 n}\right]\right| \\
& =\left[c_{0} ; c_{1}: \cdots: c_{2 k}\right] \quad \text { (odd regular c.f.) }
\end{aligned}
$$

How to compute the LLS of a rational angle (O.K. '21)

Theorem

Given integer $A=(p, q)$ and $B=(r, s)$ with non-zero entry. W.I.o.g. $\operatorname{det}(O A, O B)<0 ; p, q, r, s>0$ (other cases similar).

Let

$$
\begin{aligned}
& |q / p|=\left[a_{0} ; a_{1}: \ldots: a_{2 m}\right], \\
& |s / r|=\left[b_{0} ; b_{1}: \ldots: b_{2 n}\right] .
\end{aligned}
$$

Denote also

$$
\begin{aligned}
\alpha & =\left|\left[-a_{2 m}:-a_{2 m-1}: \cdots:-a_{1}:-a_{0}: 0: b_{0}: b_{1}: \cdots: b_{2 n}\right]\right| \\
& =\left[c_{0} ; c_{1}: \cdots: c_{2 k}\right] \quad \text { (odd regular c.f.) }
\end{aligned}
$$

Set

- $S=\left(c_{0}, c_{1}, \ldots, c_{2 k}\right)$ in the case $c_{0} \neq 0$;
- $S=\left(c_{2}, \ldots, c_{2 k}\right)$ in the case $c_{0}=0$.

How to compute the LLS of a rational angle (O.K. '21)

Theorem

Given integer $A=(p, q)$ and $B=(r, s)$ with non-zero entry.
W.I.o.g. $\operatorname{det}(O A, O B)<0 ; p, q, r, s>0$ (other cases similar).

Let

$$
\begin{aligned}
& |q / p|=\left[a_{0} ; a_{1}: \ldots: a_{2 m}\right], \\
& |s / r|=\left[b_{0} ; b_{1}: \ldots: b_{2 n}\right] .
\end{aligned}
$$

Denote also

$$
\begin{aligned}
\alpha & =\left|\left[-a_{2 m}:-a_{2 m-1}: \cdots:-a_{1}:-a_{0}: 0: b_{0}: b_{1}: \cdots: b_{2 n}\right]\right| \\
& =\left[c_{0} ; c_{1}: \cdots: c_{2 k}\right] \quad \text { (odd regular c.f.) }
\end{aligned}
$$

Set

- $S=\left(c_{0}, c_{1}, \ldots, c_{2 k}\right)$ in the case $c_{0} \neq 0$;
- $S=\left(c_{2}, \ldots, c_{2 k}\right)$ in the case $c_{0}=0$.

Then S is the LLS sequence for the angle $\angle A O B$.

How to compute the LLS of a rational angle (O.K. '21)

Example

Given $A=(12,5)$ and $B=(7,16)$.

How to compute the LLS of a rational angle (O.K. '21)

Example

Given $A=(12,5)$ and $B=(7,16)$.
Then

$$
\begin{aligned}
& |5 / 12|=[0 ; 2: 2: 1: 1], \\
& |9 / 4|=[2 ; 3: 1] .
\end{aligned}
$$

How to compute the LLS of a rational angle (O.K. '21)

Example

Given $A=(12,5)$ and $B=(7,16)$.
Then

$$
\begin{aligned}
& |5 / 12|=[0 ; 2: 2: 1: 1], \\
& |9 / 4|=[2 ; 3: 1] .
\end{aligned}
$$

Denote also

$$
\alpha=|[-1 ;-1:-2-2: 0: 0: 2: 3: 1]|
$$

How to compute the LLS of a rational angle (O.K. '21)

Example

Given $A=(12,5)$ and $B=(7,16)$.
Then

$$
\begin{aligned}
& |5 / 12|=[0 ; 2: 2: 1: 1] \\
& |9 / 4|=[2 ; 3: 1] .
\end{aligned}
$$

Denote also

$$
\begin{aligned}
\alpha & =|[-1 ;-1:-2-2: 0: 0: 2: 3: 1]| \\
& =[1 ; 1: 2: 1: 1: 1: 3: 2]
\end{aligned}
$$

How to compute the LLS of a rational angle (O.K. '21)

Example

Given $A=(12,5)$ and $B=(7,16)$.
Then

$$
\begin{aligned}
& |5 / 12|=[0 ; 2: 2: 1: 1], \\
& |9 / 4|=[2 ; 3: 1] .
\end{aligned}
$$

Denote also

$$
\begin{aligned}
\alpha & =|[-1 ;-1:-2-2: 0: 0: 2: 3: 1]| \\
& =[1 ; 1: 2: 1: 1: 1: 3: 2]
\end{aligned}
$$

Then $\operatorname{LLS}(\angle A O B)=(1 ; 1: 2: 1: 1: 1: 3: 2)$.

How to compute the LLS of a algebraic angle (O.K. '21)

Definition

$$
\begin{array}{r}
\left(s_{1}, s_{2}, s_{3}\right)-\left(s_{1}, s_{3}\right)=\left(s_{2}\right) \\
\text { e.g., }(1,2,3,4,5,6,7,8)-(1,2,3,6,7,8)=(4,5) .
\end{array}
$$

How to compute the LLS of a algebraic angle (O.K. '21)

Proposition

Let $M \in G L(2, \mathbb{Z})$ matrix M with distinct irrational eigenvalues. Let also P_{0} be any non-zero integer point.

How to compute the LLS of a algebraic angle (O.K. '21)

Proposition

Let $M \in G L(2, \mathbb{Z})$ matrix M with distinct irrational eigenvalues.
Let also P_{0} be any non-zero integer point.
Denote $P_{1}=M^{4}\left(P_{0}\right)$ and $P_{2}=M^{6}\left(P_{0}\right)$.

How to compute the LLS of a algebraic angle (O.K. '21)

Proposition

Let $M \in G L(2, \mathbb{Z})$ matrix M with distinct irrational eigenvalues. Let also P_{0} be any non-zero integer point.
Denote $P_{1}=M^{4}\left(P_{0}\right)$ and $P_{2}=M^{6}\left(P_{0}\right)$.
Then there exists a difference $\operatorname{LLS}\left(\angle P_{0} O P_{2}\right)-\operatorname{LLS}\left(\angle P_{0} O P_{1}\right)$, which is a period of the LLS sequence for M repeated twice.

Continuants

Definition

Let n be a positive integer. A continuant K_{n} is a polynomial defined recursively by

Continuants

Definition

Let n be a positive integer. A continuant K_{n} is a polynomial defined recursively by

$$
\begin{aligned}
& K_{-1}()=0 \\
& K_{0}()=1 \\
& K_{1}\left(a_{1}\right)=a_{1} ; \\
& K_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{n} K_{n-1}\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)+K_{n-2}\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)
\end{aligned}
$$

Continuants

Definition

Let n be a positive integer. A continuant K_{n} is a polynomial defined recursively by

$$
\begin{aligned}
& K_{-1}()=0 \\
& K_{0}()=1 \\
& K_{1}\left(a_{1}\right)=a_{1} ; \\
& K_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{n} K_{n-1}\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)+K_{n-2}\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)
\end{aligned}
$$

Remark

$$
\left[a_{0} ; a_{1}: \cdots: a_{n}\right]=\frac{K_{n+1}\left(a_{0}, a_{1}, \ldots, a_{n}\right)}{K_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)}
$$

LLS to reduced operators (O.K. '21)

Claim. Let M be a $G L(2, \mathbb{Z})$ matrix with

$$
\operatorname{LLS}(M)=\left(a_{1}, \ldots, a_{n}\right)
$$

LLS to reduced operators (O.K. '21)

Claim. Let M be a $G L(2, \mathbb{Z})$ matrix with

$$
\operatorname{LLS}(M)=\left(a_{1}, \ldots, a_{n}\right)
$$

Let also m be the minimal length of the period of the LLS sequence.

LLS to reduced operators (O.K. '21)

Claim. Let M be a $G L(2, \mathbb{Z})$ matrix with

$$
\operatorname{LLS}(M)=\left(a_{1}, \ldots, a_{n}\right)
$$

Let also m be the minimal length of the period of the LLS sequence.

Then the list of all reduced matrices $P G L(2, \mathbb{Z})$-conjugate to M consists of the following m matrices:
$\left(\begin{array}{cc}K_{n-2}\left(a_{2+k}, \ldots, a_{n-1+k}\right) & K_{n-1}\left(a_{2+k}, \ldots, a_{n-1+k}, a_{n+k}\right) \\ K_{n-1}\left(a_{1+k}, a_{2+k}, \ldots, a_{n-1+k}\right) & K_{n}\left(a_{1+k}, a_{2+k}, \ldots, a_{n-1+k}, a_{n+k}\right)\end{array}\right)$, for $k=1, \ldots, m$.

Computing all reduce operators (O.K. '21)

Input: Find all reduced matrices for $M=\left(\begin{array}{cc}7 & -30 \\ -10 & 43\end{array}\right)$.

Computing all reduce operators (O.K. '21)

Input: Find all reduced matrices for $M=\left(\begin{array}{cc}7 & -30 \\ -10 & 43\end{array}\right)$.
Step 1. Consider $P_{0}=(1,1)$ and

$$
\begin{aligned}
& P_{1}=M^{4}\left(P_{0}\right)=(-2875199,4119201) \text { and } \\
& P_{2}=M^{6}\left(P_{0}\right)=(-7182245951,10289762449) .
\end{aligned}
$$

Computing all reduce operators (O.K. '21)

Input: Find all reduced matrices for $M=\left(\begin{array}{cc}7 & -30 \\ -10 & 43\end{array}\right)$.
Step 1. Consider $P_{0}=(1,1)$ and

$$
\begin{aligned}
& P_{1}=M^{4}\left(P_{0}\right)=(-2875199,4119201) \quad \text { and } \\
& P_{2}=M^{6}\left(P_{0}\right)=(-7182245951,10289762449) .
\end{aligned}
$$

Using Theorem we have:

$$
\begin{align*}
& \operatorname{LLS}\left(\angle P_{0} O P_{1}\right)=(\underline{1,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,}, \overline{3}) . \\
& \operatorname{LLS}\left(\angle P_{0} O P_{2}\right)=(\underline{1,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3}, 4,1,2,3,4,1,2,3 \tag{3}
\end{align*}
$$

Computing all reduce operators (O.K. '21)

Input: Find all reduced matrices for $M=\left(\begin{array}{cc}7 & -30 \\ -10 & 43\end{array}\right)$.
Step 1. Consider $P_{0}=(1,1)$ and

$$
\begin{aligned}
& P_{1}=M^{4}\left(P_{0}\right)=(-2875199,4119201) \quad \text { and } \\
& P_{2}=M^{6}\left(P_{0}\right)=(-7182245951,10289762449) .
\end{aligned}
$$

Using Theorem we have:

$$
\begin{align*}
& \operatorname{LLS}\left(\angle P_{0} O P_{1}\right)=(1,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3, \overline{3}) . \\
& \operatorname{LLS}\left(\angle P_{0} O P_{2}\right)=(1,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3 \tag{3}
\end{align*}
$$

Step 2. By Proposition

$$
\begin{aligned}
\operatorname{LLS}(M) & =\frac{1}{2} \operatorname{LLS}\left(\angle P_{0} O P_{2}\right)-\operatorname{LLS}\left(\angle P_{0} O P_{1}\right)=\frac{1}{2}(4,1,2,3,4,1,2,3) \\
& =(4,1,2,3) .
\end{aligned}
$$

Computing all reduce operators (O.K. '21)

Input: Find all reduced matrices for $M=\left(\begin{array}{cc}7 & -30 \\ -10 & 43\end{array}\right)$.
Step 3. Write down the reduced matrices (using Claim) for
$(4,1,2,3), \quad(1,2,3,4)$,
$(2,3,4,1), \quad$ and
$(3,4,1,2)$.

Output. The list of all reduced matrices $\operatorname{PGL}(2, \mathbb{Z})$-conjugate to M :

$$
\begin{gathered}
\left(\begin{array}{cc}
K_{2}(1,2) & K_{3}(1,2,3) \\
K_{3}(4,1,2) & K_{4}(4,1,2,3)
\end{array}\right)=\left(\begin{array}{cc}
3 & 10 \\
14 & 47
\end{array}\right), \quad\left(\begin{array}{cc}
7 & 30 \\
10 & 43
\end{array}\right) \\
\left(\begin{array}{ll}
13 & 16 \\
30 & 37
\end{array}\right), \quad\left(\begin{array}{cc}
5 & 14 \\
16 & 45
\end{array}\right)
\end{gathered}
$$

The end

Thank you.

Part Extra.

Extra. Continued fractions for broken lines.

Generalization to broken lines

Generalization to broken lines

$$
V_{1} \begin{aligned}
& V_{2} \\
& \operatorname{I~} \ell\left(V_{1} V_{2}\right)=2 \\
& \operatorname{Isin} \angle V_{0} V_{1} V_{2}=2 \\
& \operatorname{I} \ell\left(V_{0} V_{1}\right)=1
\end{aligned}
$$

Is it possible to extend the LLS-sequence to arbitrary broken lines?

Generalization to broken lines

$$
\begin{aligned}
& a_{0}=1 ; \\
& a_{1}=-1 ; \\
& a_{2}=2 ; \\
& a_{3}=2 ; \\
& a_{4}=-1 .
\end{aligned}
$$

Yes.

Generalization to broken lines

Definition

$$
a_{2 k}=\left|O A_{k} \times O A_{k+1}\right|, \quad k=0, \ldots, n ;
$$

($|v \times w|$ - the oriented area of the parallelogram spanned by v and w)

Generalization to broken lines

Definition

$$
\begin{aligned}
& a_{2 k}=\left|O A_{k} \times O A_{k+1}\right|, \quad k=0, \ldots, n \\
& a_{2 k-1}=\frac{\left|A_{k} A_{k-1} \times A_{k} A_{k+1}\right|}{a_{2 k-2} a_{2 k}}, \quad k=1, \ldots, n .
\end{aligned}
$$

($|v \times w|$ — the oriented area of the parallelogram spanned by v and w)

Generalization to broken lines

Definition

$$
\begin{aligned}
& a_{2 k}=\left|O A_{k} \times O A_{k+1}\right|, \quad k=0, \ldots, n \\
& a_{2 k-1}=\frac{\left|A_{k} A_{k-1} \times A_{k} A_{k+1}\right|}{a_{2 k-2} a_{2 k}}, \quad k=1, \ldots, n .
\end{aligned}
$$

The sequence $\left(a_{0}, \ldots, a_{2 n}\right)$ is called the $L L S$-sequence. $(|v \times w|$ - the oriented area of the parallelogram spanned by v and w)

Generalization to broken lines

Definition

$$
\begin{aligned}
& a_{2 k}=\left|O A_{k} \times O A_{k+1}\right|, \quad k=0, \ldots, n ; \\
& a_{2 k-1}=\frac{\left|A_{k} A_{k-1} \times A_{k} A_{k+1}\right|}{a_{2 k-2} a_{2 k}}, \quad k=1, \ldots, n .
\end{aligned}
$$

The sequence ($a_{0}, \ldots, a_{2 n}$) is called the $L L S$-sequence. ($|v \times w|$ - the oriented area of the parallelogram spanned by v and w)

Generalized geometry of continued fractions

Theorem
Consider a broken line $A_{0} \ldots A_{n}$ with LLS-sequence $\left(a_{0}, a_{1}, \ldots, a_{2 n}\right)$. Let $A_{0}=(1,0), A_{1}=\left(1, a_{0}\right)$, and $A_{n}=(x, y)$. Then

$$
\frac{y}{x}=\left[a_{0}: a_{1} ; \ldots ; a_{2 n}\right]
$$

Generalized geometry of continued fractions

Theorem
Consider a broken line $A_{0} \ldots A_{n}$ with LLS-sequence $\left(a_{0}, a_{1}, \ldots, a_{2 n}\right)$. Let $A_{0}=(1,0), A_{1}=\left(1, a_{0}\right)$, and $A_{n}=(x, y)$. Then

Example

Generalized geometry of continued fractions

Theorem
Consider a broken line $A_{0} \ldots A_{n}$ with LLS-sequence $\left(a_{0}, a_{1}, \ldots, a_{2 n}\right)$. Let $A_{0}=(1,0), A_{1}=\left(1, a_{0}\right)$, and $A_{n}=(x, y)$. Then

Example

Illustration to the proof of Theorem

The LLS of the broken line

$$
\left(-a_{2 m},-a_{2 m-1}, \ldots,-a_{1},-a_{0}, 0, b_{0}, b_{1}, \ldots, b_{2 n}\right)
$$

Then the LLS of $\angle A O B$ is the sequence satisfies

