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Teaser
Fix k a positive integer. Take the k-th metallic number (or metallic ratio)

yk := k +
1

k +
1

k +
1

k +
1

. . .

and consider its q-deformation in the sense of S. Morier-Genoud & V. Ovsienko

[yk ]q := [k]q +
qk

[k]q−1 +
q−k

[k]q +
qk

[k]q−1 +
q−k

. . .

where [k]q = 1 + q + · · · + qk−1.



Teaser
Expand it into a Taylor series [yk ]q =

∑∞
i=0 fi qi around q = 0 and compute its

(shifted) Hankel determinants

∆(ℓ)
n := det(fi+j+ℓ)n−1

i,j=0

where n, ℓ = 0, 1, 2. . .

Our main results: we prove, for k = 1 and k = 2, and conjecture, in general,
that:

• The first k + 2 sequences ∆(0)
n , ∆(1)

n , . . . , ∆(k+1)
n consist of −1, 0, 1 only.

• They are 2k(k + 1)-periodic when k is even and 2k(k + 1)-antiperiodic
(hence 4k(k + 1)-periodic) when k is odd.

• They satisfy the following three-term Somos-Gale-Robinson recurrence

∆(ℓ)
n+2k+2 ∆(ℓ)

n = ∆(ℓ)
n+2k+1 ∆(ℓ)

n+1 −
(
∆(ℓ)

n+k+1
)2 for all n ⩾ 0.

Why do we care? Because the situation resembles others which are much
better known: when the power series

∑
fi qi is the generating function for

Catalan numbers or Motzkin numbers.

How do we do that? We find “nice” continued fractions for [yk ]q.
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Hankel determinants
To a power series f (q) =

∑∞
i=0 fi qi or a sequence of numbers f = (fi )i⩾0, one

can associate a sequence (Hn)n⩾1 of Hankel matrices defined as follows:

Hn(f ) = (fi+j)n−1
i,j=0 =


f0 f1 · · · fn−1

f1 f2 · · · fn

...
...

...
fn−1 fn · · · f2n−2

 .

Their determinants ∆n(f ) = det Hn(f ) are called Hankel determinants of f .
More generally, we can introduce a “shift” ℓ = 0, 1, 2. . . and consider the
determinants

∆(ℓ)
n (f ) := det(fi+j+ℓ)n−1

i,j=0.

Hankel matrices and determinants have important applications in
combinatorics, Padé approximation, coding theory, probability. . . e.g.

• Kronecker’s theorem: The power series f is a rational function if and only
if ∆n(f ) = 0 for n large enough.

• Hamburger’s (resp. Stieltjes’) Moment problem: is a given sequence (µn)
of numbers the moment sequence

∫
I xn dµ(x) for some measure µ? When

I = R (resp. I = (0, +∞)) a necessary and sufficient condition involves
Hankel matrices (resp. Hankel determinants).



Catalan numbers
The Catalan numbers Cn are the integers defined by Cn := 1

n+1
( n

2n

)
for n ⩾ 0:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440. . .

Some interpretations:
• (Euler, 1751) number of triangulations of a convex (n + 2)-gon.
• (Catalan, 1838) number of ways n + 1 factors can be parenthesized in a

set equipped with a binary operation, e.g. for n = 3:
((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd))

• number of Dyck paths, i.e. paths from (0, 0) to (2n, 0) in Z × Z which
never dip below the x -axis and are made up only of the two steps ↗ and
↘.

Figure: ©wikipedia



Motzkin numbers
The Motzkin numbers Mn are the integers defined by Mn =:

∑⌊n/2⌋
k=0

( n
2k

)
Ck

for n ⩾ 0:

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634. . .

Some interpretations:
• (Motzkin, 1948) number of different ways of drawing non-intersecting

chords between n points on a circle.
• number of Motzkin paths, i.e. paths from (0, 0) to (n, 0) in Z × Z which

never dip below the x -axis and are made up only of the three steps →, ↗,
↘.

Figure: ©wikipedia



Hankel determinants for Catalan and Motzkin sequences

Facts
• For the Catalan sequence:

∆n (C) = 1, 1, 1, 1 . . . ∆(1)
n (C) = 1, 1, 1, 1 . . . (1)

∆(2)
n (C) = 1, 2, 3, 4 . . . ∆(ℓ)

n (C) =
∏

1⩽i⩽j⩽ℓ−1

2n + i + j
i + j (ℓ ⩾ 2).

(Last formula: Desainte-Catherine & Viennot, 1986.)
Moreover (Cn) is the unique sequence of real numbers s.t. (1) holds.

• For the Motzkin sequence (Aigner, 1998):

∆n (M) = 1, 1, 1, 1 . . . ∆(1)
n (M) = 1, 1, 0, −1, −1, 0, . . . (2)

∆(2)
n (M) = 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, . . .

Moreover, (Mn) is the unique sequence of real numbers s.t. (2) holds.

Remark
The shifted Hankel sequence ∆(1)

n (M) satisfies the recurrence
∆n+2∆n = ∆2

n+1 − 1.



C-fractions and J-fractions
Two classical families of algebraic continued fractions:

• the C-fractions:
b0

1 −
b1qp1

1 −
b2qp2

. . .
Here (pi ) is a sequence of integers ⩾ 1, and (bi ) is a sequence of real or
complex numbers.
▶ A fraction having pi ≡ 1 is called a regular C-fraction (aka Stieltjes
continued fraction or S-fraction).

• The generalized Jacobi continued fractions, or J-fractions:

b0

1 + qA1(q) −
b1qp1

1 + qA2(q) −
b2qp2

. . .

,

where Ai (q) are polynomials with deg(Ai ) < pi − 1.
▶ A fraction having pi ≡ 2 is called a regular J-fraction.



C-fractions and J-fractions
C/J-fractions are naturally related with orthogonal polynomials and Hankel
determinants through the question of the existence of such expansions for a
given power series.

Facts
• Any power series can be written as a C-fraction (not always regular), in a

unique way.
• Any power series with non-zero Hankel determinants can be written as a

regular J-fraction, in a unique way.

Example
The formal Catalan series C(q) :=

∑
Cnqn satisfies C(q) = 1 + qC(q)2.

This equation gives the expansions as regular C -fraction and J-fraction,
respectively:

C(q) =
1

1 −
q

1 −
q
. . .

= 1 +
q

1 − 2q −
q2

1 − 2q −
q2

. . .

Notice the 1-periodicity.



C-fractions and J-fractions

Example
The formal Motzkin series M(q) :=

∑
Mnqn satisfies

M(q) = 1 + qM(q) + q2M(q)2.
This equation gives the expansions as non-regular C -fraction and regular
J-fraction, respectively:

M(q) =
1

1 −
q

1 −
q

1 −
q2

1 −
q

1 −
q

1 −
q2

. . .

=
1

1 − q −
q2

1 − q −
q2

. . .

Notice the 3- and 1-periodicities.



Hankel determinants for regular C-fractions and J-fractions
Heilermann’s formula for regular J-fractions: if

f (q) =
b0

1 + a0q −
b1q2

1 + a1q −
b2q2

1 + a2q −
b3q2

. . .

then ∆n(f ) = bn
0 bn−1

1 bn−2
2 · · · b2

n−1bn.

+ Similar formulas for ∆(1)
n (f ) and ∆(2)

n (f ).

Example
Since

M(q) =
1

1 − q −
q2

1 − q −
q2

. . .
we find that ∆n(M) ≡ 1.



Hankel determinants for regular C-fractions and J-fractions
For regular C -fractions: if

f (q) =
b0

1 +
b1q

1 +
b2q
. . .

then ∆n(f ) = bn
0 (b1b2)n−1(b3b4)n−2 · · · (b2n−5b2n−4)2(b2n−3b2n−2).

+ Similar formulas for ∆(1)
n (f ) and ∆(2)

n (f ).

Example
Recall that

C(q) =
1

1 −
q

1 −
q
. . .

hence ∆n(C) ≡ 1.
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q-integers

• Very classical (Euler, Gauss): any integer n ⩾ 0 can be quantized as a
polynomial

[n]q := 1 − qn

1 − q = 1 + q + q2 + · · · + qn−1.

This definition is equivalent to the recurrence formula

[n + 1]q = q[n]q + 1 (3)

with initial term [0]q = 0.
• Also classical are: q-factorials, q-binomials, q-hypergeometric functions. . .

used in combinatorics, number theory, fractals, mathematical physics. . .
• Extension to rationals ? The naïve idea m

n → [m]q
[n]q lack crucial properties,

such as (3).
From 2018, S. Morier-Genoud & V. Ovsienko proposed a construction of
q-analogues for rational, and then for real and complex numbers. Their
work gave rise to a beautiful theory connected to many topics: cluster
algebras, Markov-Hurwitz approximation theory, braid groups, combinators
of posets, Calabi-Yau triangulated categories, Lie algebras of differential
operators, supergeometry. . .



q-numbers: the continued fraction model
Several equivalent models are available for MGO’s deformation. One of them
involves continued fractions.

Definition
Let x ∈ R, consider its regular continued fraction expansion (finite iff x ∈ Q)

x = a0 +
1

a1 +
1

a2 +
1

. . .

,

with ai ⩾ 1. The q-deformation or q-analogue of x is the following algebraic
continued fraction:

[x ]q := [a0]q +
qa0

[a1]q−1 +
q−a1

[a2]q +
qa2

[a3]q−1 +
q−a3

. . .
(When infinite, it always converges in the field of formal Laurent series.)



q-numbers: examples[3
2

]
q

= 1 + q + q2

1 + q
,

[5
2

]
q

= 1 + 2q + q2 + q3

1 + q
,

[5
3

]
q

= 1 + q + 2q2 + q3

1 + q + q2[8
5

]
q

= 1 + 2q + 2q2 + 2q3 + q4

1 + 2q + q2 + q3

= 1 + q2 − q3 + 2q4 − 4q5 + 7q6 − 12q7 + 21q8 − 37q9 + 65q10 − 114q11 + · · ·[13
8

]
q

= 1 + 2q + 3q2 + 3q3 + 3q4 + q5

1 + 2q + 2q2 + 2q3 + q4 ,

= 1 + q2 − q3 + 2q4 − 3q5 + 3q6 − 3q7 + 4q8 − 5q9 + 5q10 − 5q11 + · · ·[21
13

]
q

= 1 + 3q + 4q2 + 5q3 + 4q4 + 3q5 + q6

1 + 3q + 3q2 + 3q3 + 2q4 + q5

= 1 + q2 − q3 + 2q4 − 4q5 + 8q6 − 17q7 + 36q8 − 75q9 + 156q10 − 325q11 + · · ·[55
34

]
q

= . . . = 1 + q2 − q3 + 2q4 − 4q5 + 8q6 − 17q7 + 37q8 − 82q9 + 184q10 − 414q11 + · · ·

. . .

[Fn+1
Fn

]
q

−→ 1 + q2 − q3 + 2q4 − 4q5 + 8q6 − 17q7 + 37q8 − 82q9 + 185q10 − 423q11 + · · ·

= 1 +
q

1 +
q−1

1 +
q

1 +
q−1

. . .

=
[

1 +
√

5
2

]
q



q-numbers: some important properties

References. Morier-Genoud & Ovsienko (2020, 2022), Leclere &
Morier-Genoud (2021).

• For any x ∈ R, the Laurent series [x ]q has integer coefficients. More
precisely,

[ · ]q : Q+ → Z+(q), Q → Z(q), R+ → Z[[q]], R → Z((q))

For x ∈ Z, [x ]q coincides with the classical definition of Euler and Gauss.
• We have, for any x ∈ R,

[x + 1]q = q[x ]q + 1,
[
− 1

x

]
q

= − 1
q[x ]q

,

i.e. the q-deformation [·]q commutes with the action of the (deformed)
modular group PSLq(2,Z) on Z((q)) ∪ {∞} by Möbius transformations.

• Special case : when x is a quadratic irrational number,
▶ [x ]q is solution of a quadratic equation with coefficients in Z[q] ⇝

explicit generating function.
▶ [x ]q has a periodic continued fraction expansion.



1. Some classical material
Hankel determinants
The example of Catalan and Motzkin sequences
C -fractions and J-fractions

2. A very short introduction to q-real numbers

3. Hankel determinants for q-metallic numbers
Introducing the q-metallic numbers
Our results
Super δ-fractions
Conjectures



q-metallic numbers
Let k be a positive integer. Consider the k-th metallic number

yk := k +
1

k +
1

k +
1

k +
1

. . .

= k +
√

k2 + 4
2

By definition, its q-deformation is the continued fraction

[yk ]q := [k]q +
qk

[k]q−1 +
q−k

[k]q +
qk

[k]q−1 +
q−k

. . .

Remark
[yk ]q = 1

2q

(
q[k]q + (qk + 1)(q − 1) +

√
(q[k]q + (qk + 1)(q − 1))2 + 4q

)
.



q-metallic numbers
Vocabulary and notation:

• k = 1: y1 = 1+
√

5
2 is the golden ratio; [y1]q will be denoted by G(q).

• k = 2: y2 =
√

2 + 1 is the silver ratio; [y2]q will be denoted by S(q).

Power series expansions:

G(q) = 1 + q2 − q3 + 2q4 − 4q5 + 8q6 − 17q7 + 37q8 − 82q9

+ 185q10 − 423q11 + 978q12 − 2283q13 + 5373q14 − 12735q15

+ 30372q16 − 72832q17 + 175502q18 − 424748q19 + 1032004q20 + · · ·

S(q) = 1 + q + q4 − 2q6 + q7 + 4q8 − 5q9 − 7q10 + 18q11 + 7q12 − 55q13

+ 18q14 + 146q15 − 155q16 − 322q17 + 692q18 + 476q19 − 2446q20 + · · ·

The coefficients of G(q) are ‘almost’ those of sequence A004148 in OEIS,
which are called “generalized Catalan numbers” and admit many combinatorial
interpretations; e.g. enumeration of peakless Motzkin paths of length n and
secondary structures of RNA molecules.
The big surprise: computer experimentations showed unexpected beautiful
properties of Hankel determinants of q-metallic numbers G , S and other [yk ]q’s.



The q-golden number

Theorem
1. The first four sequences of Hankel determinants ∆(ℓ)

n (G), for ℓ = 0, 1, 2, 3,
corresponding to the series G(q) of the q-golden number are
4-antiperiodic (thus 8-periodic):

∆(ℓ)
n+4(G) = −∆(ℓ)

n (G) ℓ = 0, 1, 2, 3,

and they consist of 0, 1, and −1 only. Periods are:

∆n(G) = 1, 1, 1, 0, −1, −1, −1, 0

∆(1)
n (G) = 1, 0, −1, 1, −1, 0, 1, −1

∆(2)
n (G) = 1, 1, 1, 0, −1, −1, −1, 0

∆(3)
n (G) = 1, −1, 0, 0, −1, 1, 0, 0

(4)

for n = 0, 1, 2, . . . , 7.
2. The first three rows are interconnected:

∆n(G) = (−1)n∆(1)
n−2(G) = ∆(2)

n (G).
3. Invertibility: the series G(q) is the only series whose first four Hankel

determinants are 8-periodic and given by (4).



The q-golden number

Remark (computer experimentation)
Higher shifted sequences ∆(ℓ)

n (G) with ℓ ⩾ 4 are not periodic, but have
interesting patterns, e.g.

∆(4)
n (G) = 1, 2, 0, −2, −3, −4, 0, 4, 5, 6, 0, −6, −7, −8, 0, 8, . . .

Compare with

∆(2)
n (M) = 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, . . .

Corollary
The first three Hankel determinants sequences ∆n(G), ∆(1)

n (G), ∆(2)
n (G) all

satisfy a Somos-4 recurrence

∆n+4∆n = ∆n+3∆n+1 − ∆2
n+2.



Somos sequences

Definition
For k ⩾ 2 an integer, a Somos-k sequence is a solution of a quadratic
recurrence of the form

Sn+kSn =
⌊k/2⌋∑

j=1

αjSn+k−jSn+j

for arbitrary parameters αi .

Remark
• Somos sequences arose from elliptic function theory. Their properties are

best understood with Fomin-Zelevinsky’s cluster algebras (and the Laurent
phenomenon). For instance, Somos-k sequences for k = 4, 5, 6, 7 with
coefficients αj = 1 and initial data S0 = S1 = · · · = Sk−1 = 1 have the
property of integrality.

• Somos sequences exhibit solutions to discrete dynamical systems
integrable in the sense of Liouville-Arnold (Fordy & Hone, 2014).

• Many examples of Somos sequences are produced by Hankel determinants.



The q-silver number

Theorem
1. The first four sequences of Hankel determinants corresponding to the

series S(q) of the q-silver number are 12-periodic:

∆(ℓ)
n+12(S) = ∆(ℓ)

n (S), ℓ = 0, 1, 2, 3,

and consist in −1, 0, 1 only. Periods are:

∆n(S) = 1, 1, −1, −1, 1, 0, −1, 0, 0, 1, 0, −1

∆(1)
n (S) = 1, 1, 0, −1, 0, 0, −1, 0, 1, 1, −1, −1

∆(2)
n (S) = 1, 0, 0, −1, 0, 1, −1, −1, 1, 1, −1, 0

∆(3)
n (S) = 1, 0, −1, −1, 1, 1, −1, −1, 0, 1, 0, 0

for n = 0, 1, 2, . . . , 11.
2. These four rows are interconnected: ∆(ℓ+1)

n (S) = (−1)n−1∆(ℓ)
n+3(S) for

ℓ = 0, 1, 2.



The q-silver number

Corollary
The first four Hankel determinants sequences ∆(ℓ)

n (S), ℓ = 0, 1, 2, 3, all satisfy
a Somos-6 recurrence

∆n+6∆n = ∆n+5∆n+1 − ∆2
n+3.

Remark (computer experimentation)
Next sequence is also 12-periodic with period

∆(4)
n (S) = 1, 1, −2, −1, 2, −1, −2, 1, 1, 0, 0, 0.

Strategy to prove the results: find continued fractions for which a Hankel
determinant formula exists!

Problem (at first sight): no hope to write q-metallic numbers as regular C/J
fractions, because of the zeros in the Hankel sequences.
Still. . . we have remarkable (non-regular) C -fractions for G(q).



C-fractions for G(q)
G(q) is represented by two C -fractions:

G(q) =
1

1 −
q2

1 +
q

1 −
q2

1 +
q
. . .

= 1 +
q2

1 +
q

1 +
q

1 +
q3

1 +
q

1 +
q

1 +
q3

. . .
Remind Catalan and Motzkin C -fractions:

C(q) =
1

1 −
q

1 −
q
. . .

M(q) =
1

1 −
q

1 −
q

1 −
q2

1 −
q

1 −
q

1 −
q2

. . .



J-fractions for G(q)
G(q) − 1

q2 =
1

1 + q −
q2

1 + q +
q3

1 + q − q2 +
q3

1 + q −
q2

. . .

(5)

G(q) − 1 − q2

q3 =
1

1 + 2q −
q4

1 + q − q2 + 2q3 −
q4

1 + 2q −
q4

1 + q − q2 + 2q3 −
q4

. . .
(6)

Remind regular J-fractions for the Catalan and Motzkin series:
C(q) − 1

q
=

1

1 − 2q −
q2

1 − 2q −
q2

. . .

M(q) =
1

1 − q −
q2

1 − q −
q2

. . .
Fact. (5) and (6) are not regular but are “super 2-fractions”.



J-fractions for G(q)
The last continued fraction we give is also the simplest:

G(q) − 1
q2 =

1

1 + q − q2 +
q3

1 + q − q2 +
q3

. . .

(7)

More generally:

Theorem
If yk is a metallic number, then we have the following 1-periodic expansion

[yk ]q = [k]q +
q2k

⟨k⟩q +
q2k+1

⟨k⟩q +
q2k+1

. . .

where ⟨k⟩q := q[k]q + (1 + qk)(1 − q).

Fact. The function
[yk ]q − [k]q

qk+1 is represented by a “super 3-fraction” (e.g. (7)
for k = 1).



Super δ-fractions

Definition (G.N. Han, 2016)
Let δ be a positive integer. A super δ-fraction is a continued fraction of the
form

H(q) =
v0qk0

1 + q U1(q) −
v1qk0+k1+δ

1 + q U2(q) −
v2qk1+k2+δ

1 + q U3(q) −
v3qk2+k3+δ

. . .

where vi ̸= 0 are constants, ki ∈ Z⩾0, and Ui (q) are polynomials such that
deg(Ui ) ⩽ ki−1 + δ − 2.

Facts
• Super δ-fractions include regular C-fractions (for δ = 1 and ki ≡ 0) and

regular J-fractions (for δ = 2 and ki ≡ 0).
• For every δ ⩾ 1, any power series can be expanded as a unique super

δ-fraction.
• When δ = 2, Hankel determinants of H(q) can be computed explicitly!

Super 2-fractions are called Hankel continued fractions.



Determinant formula for Hankel continued fractions
Let

H(q) =
v0qk0

1 + q U1(q) −
v1qk0+k1+2

1 + q U2(q) −
v2qk1+k2+2

1 + q U3(q) −
v3qk2+k3+2

. . .
be a Hankel continued fraction; introduce the notation

sn :=
n−1∑
i=0

ki + n, εn :=
n−1∑
i=0

ki (ki + 1)
2 , for n ⩾ 1.

Then {
∆sn (H(q)) = (−1)εn v sn

0 v sn−s1
1 v sn−s2

2 · · · v sn−sn−1
n−1 ,

∆m (H(q)) = 0 if m /∈ {sn, n ⩾ 1}.

This formula + our H-fractions for G(q) + some calculation ⇒ Theorem for
G(q).



H-fractions for S(q)
We have the following 8-periodic H-fraction presentations:

S(1)(q) =
1

1 −
q3

1 + 2q2 +
q5

1 + 2q2 − q3 +
q5

1 + 2q2 −
q3

1 +
q2

1 +
q2

1 + q +
q2

1 + q2 S(1)(q)

where S(1)(q) := S(q) − 1
q , as well as

S(q) =
1

1 − q +
q2

1 + q +
q2

1 + q2 S(1)(q)
These formulas + the determinant formula + some calculation ⇒ Theorem
for S(q).



Other q-metallic numbers

Facts (computer experimentation)

1. Consider the bronze ratio y3 = 3+
√

13
2 .

▶ The first five sequences of Hankel determinants ∆(ℓ)
n associated with

the series [y3]q, consist of −1, 0 and 1 only.
▶ These sequences are 24-antiperiodic, thus 48-periodic.
▶ They are interconnected and satisfy a three-term Gale-Robinson

recurrence
∆n+8∆n = ∆n+7∆n+1 − ∆2

n+4.

▶ Next sequence ∆(5)
n is also 24-antiperiodic, and takes values in

{0, ±1, ±2}.
2. Consider y4 = 2 +

√
5.

▶ The first six sequences of Hankel determinants of [y4]q consist of
−1, 0, 1 only.

▶ They are 40-periodic.
▶ They are interconnected and satisfy a three-term Gale-Robinson

recurrence
∆n+10∆n = ∆n+9∆n+1 − ∆2

n+5.

▶ Next sequence ∆(6)
n is also 40-antiperiodic, and takes values in

{0, ±1, ±2}.



Other q-metallic numbers

Conjecture
Let k ⩾ 1 and ℓ ⩾ 0 be two integers, and let ∆(ℓ)

n := ∆(ℓ)
n

(
[yk ]q

)
denote as

before the ℓ-shifted sequence of Hankel determinants associated with the
q-deformation of the metallic number yk .
(a) The k + 2 sequences ∆(0)

n , ∆(1)
n , . . . , ∆(k+1)

n

(i) consist of −1, 0, 1 only,
(ii) are 2k(k + 1)-periodic when k is even and 2k(k + 1)-antiperiodic

(hence 4k(k + 1)-periodic) when k is odd,
(iii) satisfy the Somos-Gale-Robinson recurrence

∆(ℓ)
n+2k+2 ∆(ℓ)

n = ∆(ℓ)
n+2k+1 ∆(ℓ)

n+1 −
(
∆(ℓ)

n+k+1
)2 for all n ⩾ 0.

(b) Next sequence ∆(k+2)
n also satisfies (ii) and takes values in {0, ±1, ±2}.

(c) The k + 1 pairs of consecutive shifted sequences (∆(ℓ)
n , ∆(ℓ−1)

n ) with
ℓ = 1, 2, . . . , k + 1 are interconnected by the formula:

∆(ℓ)
n = (−1)n+ k(k+2ℓ+1)

2 ∆(ℓ−1)
n+k+1 for all n ⩾ 0.
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