# Continued fractions and Hankel determinants for $q$-metallic numbers 

Emmanuel Pedon (Univ. Reims)<br>in collaboration with Valentin Ovsienko (CNRS \& Univ. Reims)

Talk based on arXiv:2312.17009

Continued Fractions and $S L_{2}$-tilings
Durham, 26 March 2024

## Teaser

Fix $k$ a positive integer. Take the $k$-th metallic number (or metallic ratio)

$$
y_{k}:=k+\frac{1}{k+\frac{1}{k+\frac{1}{k+\frac{1}{\ddots}}}}
$$

and consider its $q$-deformation in the sense of S . Morier-Genoud \& V. Ovsienko

$$
\left[y_{k}\right]_{q}:=[k]_{q}+\frac{q^{k}}{[k]_{q^{-1}}+\frac{q^{-k}}{[k]_{q}+\frac{q^{k}}{[k]_{q^{-1}}+\frac{q^{-k}}{\ddots}}}}
$$

where $[k]_{q}=1+q+\cdots+q^{k-1}$.

## Teaser

Expand it into a Taylor series $\left[y_{k}\right]_{q}=\sum_{i=0}^{\infty} f_{i} q^{i}$ around $q=0$ and compute its (shifted) Hankel determinants

$$
\Delta_{n}^{(\ell)}:=\operatorname{det}\left(f_{i+j+\ell}\right)_{i, j=0}^{n-1}
$$

where $n, \ell=0,1,2 \ldots$
Our main results: we prove, for $k=1$ and $k=2$, and conjecture, in general, that:

- The first $k+2$ sequences $\Delta_{n}^{(0)}, \Delta_{n}^{(1)}, \ldots, \Delta_{n}^{(k+1)}$ consist of $-1,0,1$ only.
- They are $2 k(k+1)$-periodic when $k$ is even and $2 k(k+1)$-antiperiodic (hence $4 k(k+1)$-periodic) when $k$ is odd.
- They satisfy the following three-term Somos-Gale-Robinson recurrence

$$
\Delta_{n+2 k+2}^{(\ell)} \Delta_{n}^{(\ell)}=\Delta_{n+2 k+1}^{(\ell)} \Delta_{n+1}^{(\ell)}-\left(\Delta_{n+k+1}^{(\ell)}\right)^{2} \quad \text { for all } n \geqslant 0
$$

Why do we care? Because the situation resembles others which are much better known: when the power series $\sum f_{i} q^{i}$ is the generating function for Catalan numbers or Motzkin numbers.

How do we do that? We find "nice" continued fractions for $\left[y_{k}\right]_{q}$.

## Outline

1. Some classical material

Hankel determinants
The example of Catalan and Motzkin sequences
$C$-fractions and $J$-fractions
2. A very short introduction to $q$-real numbers
3. Hankel determinants for $q$-metallic numbers

Introducing the $q$-metallic numbers
Our results
Super $\delta$-fractions
Conjectures

## Hankel determinants

To a power series $f(q)=\sum_{i=0}^{\infty} f_{i} q^{i}$ or a sequence of numbers $f=\left(f_{i}\right)_{i \geqslant 0}$, one can associate a sequence $\left(H_{n}\right)_{n \geqslant 1}$ of Hankel matrices defined as follows:

$$
H_{n}(f)=\left(f_{i+j}\right)_{i, j=0}^{n-1}=\left(\begin{array}{cccc}
f_{0} & f_{1} & \cdots & f_{n-1} \\
f_{1} & f_{2} & \cdots & f_{n} \\
\vdots & \vdots & & \vdots \\
f_{n-1} & f_{n} & \cdots & f_{2 n-2}
\end{array}\right)
$$

Their determinants $\Delta_{n}(f)=\operatorname{det} H_{n}(f)$ are called Hankel determinants of $f$. More generally, we can introduce a "shift" $\ell=0,1,2 \ldots$ and consider the determinants

$$
\Delta_{n}^{(\ell)}(f):=\operatorname{det}\left(f_{i+j+\ell}\right)_{i, j=0}^{n-1}
$$

Hankel matrices and determinants have important applications in combinatorics, Padé approximation, coding theory, probability. . e.g.

- Kronecker's theorem: The power series $f$ is a rational function if and only if $\Delta_{n}(f)=0$ for $n$ large enough.
- Hamburger's (resp. Stieltjes') Moment problem: is a given sequence $\left(\mu_{n}\right)$ of numbers the moment sequence $\int_{1} x^{n} \mathrm{~d} \mu(x)$ for some measure $\mu$ ? When $I=\mathbb{R}($ resp. $I=(0,+\infty))$ a necessary and sufficient condition involves Hankel matrices (resp. Hankel determinants).


## Catalan numbers

The Catalan numbers $C_{n}$ are the integers defined by $C_{n}:=\frac{1}{n+1}\binom{n}{2 n}$ for $n \geqslant 0$ : $1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440 \ldots$
Some interpretations:

- (Euler, 1751) number of triangulations of a convex $(n+2)$-gon.
- (Catalan, 1838) number of ways $n+1$ factors can be parenthesized in a set equipped with a binary operation, e.g. for $n=3$ :

$$
((a b) c) d \quad(a(b c)) d \quad(a b)(c d) \quad a((b c) d) \quad a(b(c d))
$$

- number of Dyck paths, i.e. paths from $(0,0)$ to $(2 n, 0)$ in $\mathbb{Z} \times \mathbb{Z}$ which never dip below the $x$-axis and are made up only of the two steps $\nearrow$ and


Figure: ©wikipedia

## Motzkin numbers

The Motzkin numbers $M_{n}$ are the integers defined by $M_{n}=: \sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} C_{k}$ for $n \geqslant 0$ :

$$
1,1,2,4,9,21,51,127,323,835,2188,5798,15511,41835,113634 \ldots
$$

Some interpretations:

- (Motzkin, 1948) number of different ways of drawing non-intersecting chords between $n$ points on a circle.
- number of Motzkin paths, i.e. paths from $(0,0)$ to $(n, 0)$ in $\mathbb{Z} \times \mathbb{Z}$ which never dip below the $x$-axis and are made up only of the three steps $\rightarrow, \nearrow$, $\searrow$.


Figure: ©wikipedia

## Hankel determinants for Catalan and Motzkin sequences

## Facts

- For the Catalan sequence:

$$
\begin{array}{ll}
\Delta_{n}(C)=1,1,1,1 \ldots & \Delta_{n}^{(1)}(C)=1,1,1,1 \ldots  \tag{1}\\
\Delta_{n}^{(2)}(C)=1,2,3,4 \ldots & \Delta_{n}^{(\ell)}(C)=\prod_{1 \leqslant i \leqslant j \leqslant \ell-1} \frac{2 n+i+j}{i+j} \quad(\ell \geqslant 2)
\end{array}
$$

(Last formula: Desainte-Catherine \& Viennot, 1986.) Moreover $\left(C_{n}\right)$ is the unique sequence of real numbers s.t. (1) holds.

- For the Motzkin sequence (Aigner, 1998):

$$
\begin{align*}
& \Delta_{n}(M)=1,1,1,1 \ldots \\
& \Delta_{n}^{(2)}(M)=1,2,2,3,4,4,5,6,6,7,8,8, \ldots \tag{2}
\end{align*}
$$

Moreover, $\left(M_{n}\right)$ is the unique sequence of real numbers s.t. (2) holds.

## Remark

The shifted Hankel sequence $\Delta_{n}^{(1)}(M)$ satisfies the recurrence $\Delta_{n+2} \Delta_{n}=\Delta_{n+1}^{2}-1$.

## C-fractions and J-fractions

Two classical families of algebraic continued fractions:

- the C-fractions:

$$
\frac{b_{0}}{1-\frac{b_{1} q^{p_{1}}}{1-\frac{b_{2} q^{p_{2}}}{\ddots}}}
$$

Here $\left(p_{i}\right)$ is a sequence of integers $\geqslant 1$, and $\left(b_{i}\right)$ is a sequence of real or complex numbers.

- A fraction having $p_{i} \equiv 1$ is called a regular C-fraction (aka Stieltjes continued fraction or $S$-fraction).
- The generalized Jacobi continued fractions, or J-fractions:

where $A_{i}(q)$ are polynomials with $\operatorname{deg}\left(A_{i}\right)<p_{i}-1$.
- A fraction having $p_{i} \equiv 2$ is called a regular $J$-fraction.


## C-fractions and J-fractions

$C / J$-fractions are naturally related with orthogonal polynomials and Hankel determinants through the question of the existence of such expansions for a given power series.

## Facts

- Any power series can be written as a C-fraction (not always regular), in a unique way.
- Any power series with non-zero Hankel determinants can be written as a regular J-fraction, in a unique way.


## Example

The formal Catalan series $C(q):=\sum C_{n} q^{n}$ satisfies $C(q)=1+q C(q)^{2}$. This equation gives the expansions as regular $C$-fraction and $J$-fraction, respectively:

$$
C(q)=\frac{1}{1-\frac{q}{1-\frac{q}{\ddots}}}=1+\frac{q}{1-2 q-\frac{q^{2}}{1-2 q-\frac{q^{2}}{\ddots}}}
$$

Notice the 1-periodicity.

## C-fractions and J-fractions

## Example

The formal Motzkin series $M(q):=\sum M_{n} q^{n}$ satisfies $M(q)=1+q M(q)+q^{2} M(q)^{2}$.
This equation gives the expansions as non-regular $C$-fraction and regular $J$-fraction, respectively:

$$
M(q)=\frac{1}{1-\frac{q}{1-\frac{q}{1-\frac{q^{2}}{1-\frac{q}{1-\frac{q}{1-\frac{q^{2}}{1-}}}}}}}=\frac{1}{1-q-\frac{q^{2}}{1-q-\frac{q^{2}}{\ddots}}}
$$

Notice the 3- and 1-periodicities.

## Hankel determinants for regular $C$-fractions and J-fractions

Heilermann's formula for regular J-fractions: if

$$
f(q)=\frac{b_{0}}{1+a_{0} q-\frac{b_{1} q^{2}}{1+a_{1} q-\frac{b_{2} q^{2}}{1+a_{2} q-\frac{b_{3} q^{2}}{\ddots}}}}
$$

then $\Delta_{n}(f)=b_{0}^{n} b_{1}^{n-1} b_{2}^{n-2} \cdots b_{n-1}^{2} b_{n}$.

+ Similar formulas for $\Delta_{n}^{(1)}(f)$ and $\Delta_{n}^{(2)}(f)$.


## Example

Since

$$
M(q)=\frac{1}{1-q-\frac{q^{2}}{1-q-\frac{q^{2}}{\ddots}}}
$$

we find that $\Delta_{n}(M) \equiv 1$.

## Hankel determinants for regular $C$-fractions and J-fractions

For regular $C$-fractions: if

$$
f(q)=\frac{b_{0}}{1+\frac{b_{1} q}{1+\frac{b_{2} q}{\ddots}}}
$$

then $\Delta_{n}(f)=b_{0}^{n}\left(b_{1} b_{2}\right)^{n-1}\left(b_{3} b_{4}\right)^{n-2} \cdots\left(b_{2 n-5} b_{2 n-4}\right)^{2}\left(b_{2 n-3} b_{2 n-2}\right)$.

+ Similar formulas for $\Delta_{n}^{(1)}(f)$ and $\Delta_{n}^{(2)}(f)$.


## Example

Recall that

$$
C(q)=\frac{1}{1-\frac{q}{1-\frac{q}{\ddots}}}
$$

hence $\Delta_{n}(C) \equiv 1$.

1. Some classical material

Hankel determinants
The example of Catalan and Motzkin sequences $C$-fractions and J-fractions
2. A very short introduction to $q$-real numbers
3. Hankel determinants for $q$-metallic numbers

Introducing the $q$-metallic numbers
Our results
Super $\delta$-fractions
Conjectures

## $q$-integers

- Very classical (Euler, Gauss): any integer $n \geqslant 0$ can be quantized as a polynomial

$$
[n]_{q}:=\frac{1-q^{n}}{1-q}=1+q+q^{2}+\cdots+q^{n-1} .
$$

This definition is equivalent to the recurrence formula

$$
\begin{equation*}
[n+1]_{q}=q[n]_{q}+1 \tag{3}
\end{equation*}
$$

with initial term $[0]_{q}=0$.

- Also classical are: $q$-factorials, $q$-binomials, $q$-hypergeometric functions... used in combinatorics, number theory, fractals, mathematical physics. . .
- Extension to rationals ? The naïve idea $\frac{m}{n} \rightarrow \frac{[m]_{q}}{[n]_{q}}$ lack crucial properties, such as (3).
From 2018, S. Morier-Genoud \& V. Ovsienko proposed a construction of $q$-analogues for rational, and then for real and complex numbers. Their work gave rise to a beautiful theory connected to many topics: cluster algebras, Markov-Hurwitz approximation theory, braid groups, combinators of posets, Calabi-Yau triangulated categories, Lie algebras of differential operators, supergeometry. . .


## $q$-numbers: the continued fraction model

Several equivalent models are available for MGO's deformation. One of them involves continued fractions.

## Definition

Let $x \in \mathbb{R}$, consider its regular continued fraction expansion (finite iff $x \in \mathbb{Q}$ )

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{-}}}
$$

with $a_{i} \geqslant 1$. The $q$-deformation or $q$-analogue of $x$ is the following algebraic continued fraction:

$$
[x]_{q}:=\left[a_{0}\right]_{q}+\frac{q^{a_{0}}}{\left[a_{1}\right]_{q^{-1}}+\frac{q^{-a_{1}}}{\left[a_{2}\right]_{q}+\frac{q^{a_{2}}}{\left[a_{3}\right]_{q^{-1}}+\frac{q^{-a_{3}}}{}}}}
$$

(When infinite, it always converges in the field of formal Laurent series.)

## $q$-numbers: examples

$$
\begin{aligned}
& {\left[\begin{array}{l}
{\left[\frac{3}{2}\right]_{q}}
\end{array}=\frac{1+q+q^{2}}{1+q}, \quad\left[\frac{5}{2}\right]_{q}=\frac{1+2 q+q^{2}+q^{3}}{1+q}, \quad\left[\frac{5}{3}\right]_{q}=\frac{1+q+2 q^{2}+q^{3}}{1+q+q^{2}}\right.} \\
& \begin{aligned}
& {\left[\frac{8}{5}\right]_{q} }=\frac{1+2 q+2 q^{2}+2 q^{3}+q^{4}}{1+2 q+q^{2}+q^{3}} \\
&=1+q^{2}-q^{3}+2 q^{4}-4 q^{5}+7 q^{6}-12 q^{7}+21 q^{8}-37 q^{9}+65 q^{10}-114 q^{11}+\cdots \\
& {\left[\frac{13}{8}\right]_{q} }=\frac{1+2 q+3 q^{2}+3 q^{3}+3 q^{4}+q^{5}}{1+2 q+2 q^{2}+2 q^{3}+q^{4}}, \\
&=1+q^{2}-q^{3}+2 q^{4}-3 q^{5}+3 q^{6}-3 q^{7}+4 q^{8}-5 q^{9}+5 q^{10}-5 q^{11}+\cdots \\
& {\left[\frac{21}{13}\right]_{q} }=\frac{1+3 q+4 q^{2}+5 q^{3}+4 q^{4}+3 q^{5}+q^{6}}{1+3 q+3 q^{2}+3 q^{3}+2 q^{4}+q^{5}} \\
&=1+q^{2}-q^{3}+2 q^{4}-4 q^{5}+8 q^{6}-17 q^{7}+36 q^{8}-75 q^{9}+156 q^{10}-325 q^{11}+\cdots \\
& {\left[\frac{55}{34}\right]_{q} }=\ldots=1+q^{2}-q^{3}+2 q^{4}-4 q^{5}+8 q^{6}-17 q^{7}+37 q^{8}-82 q^{9}+184 q^{10}-414 q^{11}+\cdot \\
& \ldots\left[\frac{F_{n+1}}{F_{n}}\right]_{q} \longrightarrow 1+q^{2}-q^{3}+2 q^{4}-4 q^{5}+8 q^{6}-17 q^{7}+37 q^{8}-82 q^{9}+185 q^{10}-423 q^{11}+ \\
&=1+\frac{q}{1+\frac{q^{-1}}{1+\frac{q}{2}}}=\left[\frac{1+\sqrt{5}}{2}\right]_{q}
\end{aligned}
\end{aligned}
$$

## $q$-numbers: some important properties

References. Morier-Genoud \& Ovsienko (2020, 2022), Leclere \& Morier-Genoud (2021).

- For any $x \in \mathbb{R}$, the Laurent series $[x]_{q}$ has integer coefficients. More precisely,

$$
[\cdot]_{q}: \quad \mathbb{Q}^{+} \rightarrow \mathbb{Z}^{+}(q), \quad \mathbb{Q} \rightarrow \mathbb{Z}(q), \quad \mathbb{R}^{+} \rightarrow \mathbb{Z}[[q]], \quad \mathbb{R} \rightarrow \mathbb{Z}((q))
$$

For $x \in \mathbb{Z},[x]_{q}$ coincides with the classical definition of Euler and Gauss.

- We have, for any $x \in \mathbb{R}$,

$$
[x+1]_{q}=q[x]_{q}+1, \quad\left[-\frac{1}{x}\right]_{q}=-\frac{1}{q[x]_{q}}
$$

i.e. the $q$-deformation $[\cdot]_{q}$ commutes with the action of the (deformed) modular group $P S L_{q}(2, \mathbb{Z})$ on $\mathbb{Z}((q)) \cup\{\infty\}$ by Möbius transformations.

- Special case : when $x$ is a quadratic irrational number,
$-[x]_{q}$ is solution of a quadratic equation with coefficients in $\mathbb{Z}[q] \rightsquigarrow$ explicit generating function.
- $[x]_{q}$ has a periodic continued fraction expansion.

1. Some classical material

Hankel determinants
The example of Catalan and Motzkin sequences $C$-fractions and J-fractions
2. A very short introduction to $q$-real numbers
3. Hankel determinants for $q$-metallic numbers

Introducing the $q$-metallic numbers
Our results
Super $\delta$-fractions
Conjectures

## $q$-metallic numbers

Let $k$ be a positive integer. Consider the $k$-th metallic number

$$
y_{k}:=k+\frac{1}{k+\frac{1}{k+\frac{1}{k+\frac{1}{\ddots}}}}=\frac{k+\sqrt{k^{2}+4}}{2}
$$

By definition, its $q$-deformation is the continued fraction

$$
\left[y_{k}\right]_{q}:=[k]_{q}+\frac{q^{k}}{[k]_{q^{-1}}+\frac{q^{-k}}{[k]_{q}+\frac{q^{k}}{[k]_{q^{-1}}+\frac{q^{-k}}{\ddots}}}}
$$

Remark

$$
\left[y_{k}\right]_{q}=\frac{1}{2 q}\left(q[k]_{q}+\left(q^{k}+1\right)(q-1)+\sqrt{\left(q[k]_{q}+\left(q^{k}+1\right)(q-1)\right)^{2}+4 q}\right) .
$$

## $q$-metallic numbers

Vocabulary and notation:

- $k=1: y_{1}=\frac{1+\sqrt{5}}{2}$ is the golden ratio; $\left[y_{1}\right]_{q}$ will be denoted by $G(q)$.
- $k=2: y_{2}=\sqrt{2}+1$ is the silver ratio; $\left[y_{2}\right]_{q}$ will be denoted by $S(q)$.

Power series expansions:

$$
\begin{aligned}
G(q)= & 1+q^{2}-q^{3}+2 q^{4}-4 q^{5}+8 q^{6}-17 q^{7}+37 q^{8}-82 q^{9} \\
& +185 q^{10}-423 q^{11}+978 q^{12}-2283 q^{13}+5373 q^{14}-12735 q^{15} \\
& +30372 q^{16}-72832 q^{17}+175502 q^{18}-424748 q^{19}+1032004 q^{20}+\cdots \\
S(q)= & 1+q+q^{4}-2 q^{6}+q^{7}+4 q^{8}-5 q^{9}-7 q^{10}+18 q^{11}+7 q^{12}-55 q^{13} \\
& +18 q^{14}+146 q^{15}-155 q^{16}-322 q^{17}+692 q^{18}+476 q^{19}-2446 q^{20}+\cdots
\end{aligned}
$$

The coefficients of $G(q)$ are 'almost' those of sequence A004148 in OEIS, which are called "generalized Catalan numbers" and admit many combinatorial interpretations; e.g. enumeration of peakless Motzkin paths of length $n$ and secondary structures of RNA molecules.
The big surprise: computer experimentations showed unexpected beautiful properties of Hankel determinants of $q$-metallic numbers $G, S$ and other $\left[y_{k}\right]_{q}$ 's.

## The $q$-golden number

## Theorem

1. The first four sequences of Hankel determinants $\Delta_{n}^{(\ell)}(G)$, for $\ell=0,1,2,3$, corresponding to the series $G(q)$ of the $q$-golden number are 4-antiperiodic (thus 8-periodic):

$$
\Delta_{n+4}^{(\ell)}(G)=-\Delta_{n}^{(\ell)}(G) \quad \ell=0,1,2,3
$$

and they consist of 0,1 , and -1 only. Periods are:

$$
\begin{array}{rrrrrrrrrr}
\Delta_{n}(G) & = & 1, & 1, & 1, & 0, & -1, & -1, & -1, & 0 \\
\Delta_{n}^{(1)}(G) & = & 1, & 0, & -1, & 1, & -1, & 0, & 1, & -1 \\
\Delta_{n}^{(2)}(G) & = & 1, & 1, & 1, & 0, & -1, & -1, & -1, & 0  \tag{4}\\
\Delta_{n}^{(3)}(G) & = & 1, & -1, & 0, & 0, & -1, & 1, & 0, & 0
\end{array}
$$

for $n=0,1,2, \ldots, 7$.
2. The first three rows are interconnected:

$$
\Delta_{n}(G)=(-1)^{n} \Delta_{n-2}^{(1)}(G)=\Delta_{n}^{(2)}(G)
$$

3. Invertibility: the series $G(q)$ is the only series whose first four Hankel determinants are 8-periodic and given by (4).

## The $q$-golden number

## Remark (computer experimentation)

Higher shifted sequences $\Delta_{n}^{(\ell)}(G)$ with $\ell \geqslant 4$ are not periodic, but have interesting patterns, e.g.

$$
\Delta_{n}^{(4)}(G)=1,2,0,-2,-3,-4,0,4,5,6,0,-6,-7,-8,0,8, \ldots
$$

Compare with

$$
\Delta_{n}^{(2)}(M)=1,2,2,3,4,4,5,6,6,7,8,8, \ldots
$$

Corollary
The first three Hankel determinants sequences $\Delta_{n}(G), \Delta_{n}^{(1)}(G), \Delta_{n}^{(2)}(G)$ all satisfy a Somos-4 recurrence

$$
\Delta_{n+4} \Delta_{n}=\Delta_{n+3} \Delta_{n+1}-\Delta_{n+2}^{2}
$$

## Somos sequences

## Definition

For $k \geqslant 2$ an integer, a Somos- $k$ sequence is a solution of a quadratic recurrence of the form

$$
S_{n+k} S_{n}=\sum_{j=1}^{\lfloor k / 2\rfloor} \alpha_{j} S_{n+k-j} S_{n+j}
$$

for arbitrary parameters $\alpha_{i}$.

## Remark

- Somos sequences arose from elliptic function theory. Their properties are best understood with Fomin-Zelevinsky's cluster algebras (and the Laurent phenomenon). For instance, Somos- $k$ sequences for $k=4,5,6,7$ with coefficients $\alpha_{j}=1$ and initial data $S_{0}=S_{1}=\cdots=S_{k-1}=1$ have the property of integrality.
- Somos sequences exhibit solutions to discrete dynamical systems integrable in the sense of Liouville-Arnold (Fordy \& Hone, 2014).
- Many examples of Somos sequences are produced by Hankel determinants.


## The $q$-silver number

## Theorem

1. The first four sequences of Hankel determinants corresponding to the series $S(q)$ of the $q$-silver number are 12-periodic:

$$
\Delta_{n+12}^{(\ell)}(S)=\Delta_{n}^{(\ell)}(S), \quad \ell=0,1,2,3
$$

and consist in $-1,0,1$ only. Periods are:

$$
\begin{array}{rlrlllllllllll}
\Delta_{n}(S) & = & 1, & 1, & -1, & -1, & 1, & 0, & -1, & 0, & 0, & 1, & 0, & -1 \\
\Delta_{n}^{(1)}(S) & = & 1, & 1, & 0, & -1, & 0, & 0, & -1, & 0, & 1, & 1, & -1, & -1 \\
\Delta_{n}^{(2)}(S) & = & 1, & 0, & 0, & -1, & 0, & 1, & -1, & -1, & 1, & 1, & -1, & 0 \\
\Delta_{n}^{(3)}(S) & = & 1, & 0, & -1, & -1, & 1, & 1, & -1, & -1, & 0, & 1, & 0, & 0
\end{array}
$$

$$
\text { for } n=0,1,2, \ldots, 11
$$

2. These four rows are interconnected: $\Delta_{n}^{(\ell+1)}(S)=(-1)^{n-1} \Delta_{n+3}^{(\ell)}(S)$ for $\ell=0,1,2$.

## The $q$-silver number

## Corollary

The first four Hankel determinants sequences $\Delta_{n}^{(\ell)}(S), \ell=0,1,2,3$, all satisfy a Somos-6 recurrence

$$
\Delta_{n+6} \Delta_{n}=\Delta_{n+5} \Delta_{n+1}-\Delta_{n+3}^{2}
$$

Remark (computer experimentation)
Next sequence is also 12 -periodic with period

$$
\Delta_{n}^{(4)}(S)=1,1,-2,-1,2,-1,-2,1,1,0,0,0
$$

Strategy to prove the results: find continued fractions for which a Hankel determinant formula exists!

Problem (at first sight): no hope to write $q$-metallic numbers as regular $C / J$ fractions, because of the zeros in the Hankel sequences.
Still. . . we have remarkable (non-regular) C-fractions for $G(q)$.

## $C$-fractions for $G(q)$

$G(q)$ is represented by two $C$-fractions:

$$
G(q)=\frac{1}{1-\frac{q^{2}}{1+\frac{q}{1-\frac{q^{2}}{1+\frac{q}{2}}}}} \quad=1+\frac{q^{2}}{1+\frac{q}{1+\frac{q}{1+\frac{q^{3}}{1+\frac{q}{1+\frac{q}{q^{3}}}}}}}
$$

Remind Catalan and Motzkin C-fractions:

$$
C(q)=\frac{1}{1-\frac{q}{1-\frac{q}{\ddots}}} \quad M(q)=\frac{1}{1-\frac{q}{1-\frac{q}{1-\frac{q^{2}}{1-\frac{q}{1-\frac{q}{1-\frac{q^{2}}{1-2}}}}}} \text { }}
$$

## $J$-fractions for $G(q)$

$$
\begin{gather*}
\frac{G(q)-1}{q^{2}}=\frac{1}{1+q-\frac{q^{2}}{1+q+\frac{q^{3}}{1+q-q^{2}+\frac{q^{3}}{1+q-\frac{q^{2}}{{ }_{2}^{2}}}}}}  \tag{5}\\
\frac{G(q)-1-q^{2}}{q^{3}}=\frac{1}{1+2 q-\frac{q^{4}}{1+q-q^{2}+2 q^{3}-\frac{q^{4}}{1+2 q-\frac{q^{4}}{1+q-q^{2}+2 q^{3}-\frac{q^{4}}{}}}}}
\end{gather*}
$$

Remind regular $J$-fractions for the Catalan and Motzkin series:

$$
\begin{equation*}
\frac{C(q)-1}{q}=\frac{1}{1-2 q-\frac{q^{2}}{1-2 q-\frac{q^{2}}{2}}} \quad M(q)=\frac{1}{1-q-\frac{q^{2}}{1-q-\frac{q^{2}}{}}} \tag{6}
\end{equation*}
$$

Fact. (5) and (6) are not regular but are "super 2-fractions".

## $J$-fractions for $G(q)$

The last continued fraction we give is also the simplest:

$$
\begin{equation*}
\frac{G(q)-1}{q^{2}}=\frac{1}{1+q-q^{2}+\frac{q^{3}}{1+q-q^{2}+\frac{q^{3}}{\ddots}}} \tag{7}
\end{equation*}
$$

More generally:
Theorem
If $y_{k}$ is a metallic number, then we have the following 1-periodic expansion

$$
\left[y_{k}\right]_{q}=[k]_{q}+\frac{q^{2 k}}{\langle k\rangle_{q}+\frac{q^{2 k+1}}{\langle k\rangle_{q}+\frac{q^{2 k+1}}{\ddots}}}
$$

where $\langle k\rangle_{q}:=q[k]_{q}+\left(1+q^{k}\right)(1-q)$.
Fact. The function $\frac{\left[y_{k}\right]_{q}-[k]_{q}}{q^{k+1}}$ is represented by a "super 3-fraction" (e.g. (7) for $k=1$ ).

## Super $\delta$-fractions

Definition (G.N. Han, 2016)
Let $\delta$ be a positive integer. A super $\delta$-fraction is a continued fraction of the form

$$
H(q)=\frac{v_{0} q^{k_{0}}}{1+q U_{1}(q)-\frac{v_{1} q^{k_{0}+k_{1}+\delta}}{1+q U_{2}(q)-\frac{v_{2} q^{k_{1}+k_{2}+\delta}}{1+q U_{3}(q)-\frac{v_{3} q^{k_{2}+k_{3}+\delta}}{\ddots}}}}
$$

where $v_{i} \neq 0$ are constants, $k_{i} \in \mathbb{Z}_{\geqslant 0}$, and $U_{i}(q)$ are polynomials such that $\operatorname{deg}\left(U_{i}\right) \leqslant k_{i-1}+\delta-2$.

## Facts

- Super $\delta$-fractions include regular $C$-fractions (for $\delta=1$ and $k_{i} \equiv 0$ ) and regular J-fractions (for $\delta=2$ and $k_{i} \equiv 0$ ).
- For every $\delta \geqslant 1$, any power series can be expanded as a unique super $\delta$-fraction.
- When $\delta=2$, Hankel determinants of $H(q)$ can be computed explicitly! Super 2-fractions are called Hankel continued fractions.


## Determinant formula for Hankel continued fractions

Let

$$
H(q)=\frac{v_{0} q^{k_{0}}}{1+q U_{1}(q)-\frac{v_{1} q^{k_{0}+k_{1}+2}}{1+q U_{2}(q)-\frac{v_{2} q^{k_{1}+k_{2}+2}}{1+q U_{3}(q)-\frac{v_{3} q^{k_{2}+k_{3}+2}}{\ddots}}}}
$$

be a Hankel continued fraction; introduce the notation

$$
s_{n}:=\sum_{i=0}^{n-1} k_{i}+n, \quad \varepsilon_{n}:=\sum_{i=0}^{n-1} \frac{k_{i}\left(k_{i}+1\right)}{2}, \quad \text { for } n \geqslant 1
$$

Then

$$
\left\{\begin{aligned}
\Delta_{s_{n}}(H(q)) & =(-1)^{\varepsilon_{n}} v_{0}^{s_{n}} v_{1}^{s_{n}-s_{1}} v_{2}^{s_{n}-s_{2}} \cdots v_{n-1}^{s_{n}-s_{n-1}} \\
\Delta_{m}(H(q)) & =0 \text { if } m \notin\left\{s_{n}, n \geqslant 1\right\}
\end{aligned}\right.
$$

This formula + our $H$-fractions for $G(q)+$ some calculation $\Rightarrow$ Theorem for $G(q)$.

## $H$-fractions for $S(q)$

We have the following 8-periodic H -fraction presentations:

$$
S^{(1)}(q)=\frac{1}{1-\frac{q^{3}}{1+2 q^{2}+\frac{q^{5}}{1+2 q^{2}-q^{3}+\frac{q^{5}}{1+2 q^{2}-\frac{q^{3}}{1+\frac{q^{2}}{1+\frac{q^{2}}{1+q+\frac{q^{2}}{1+q^{2} S^{(1)}(q)}}}}}}}=1}
$$

where $S^{(1)}(q):=\frac{S(q)-1}{q}$, as well as

$$
S(q)=\frac{1}{1-q+\frac{q^{2}}{1+q+\frac{q^{2}}{1+q^{2} S^{(1)}(q)}}}
$$

These formulas + the determinant formula + some calculation $\Rightarrow$ Theorem for $S(q)$.

## Other $q$-metallic numbers

## Facts (computer experimentation)

1. Consider the bronze ratio $y_{3}=\frac{3+\sqrt{13}}{2}$.

- The first five sequences of Hankel determinants $\Delta_{n}^{(\ell)}$ associated with the series $\left[y_{3}\right]_{q}$, consist of $-1,0$ and 1 only.
- These sequences are 24-antiperiodic, thus 48-periodic.
- They are interconnected and satisfy a three-term Gale-Robinson recurrence

$$
\Delta_{n+8} \Delta_{n}=\Delta_{n+7} \Delta_{n+1}-\Delta_{n+4}^{2}
$$

- Next sequence $\Delta_{n}^{(5)}$ is also 24-antiperiodic, and takes values in $\{0, \pm 1, \pm 2\}$.

2. Consider $y_{4}=2+\sqrt{5}$.

- The first six sequences of Hankel determinants of $\left[y_{4}\right]_{q}$ consist of $-1,0,1$ only.
- They are 40-periodic.
- They are interconnected and satisfy a three-term Gale-Robinson recurrence

$$
\Delta_{n+10} \Delta_{n}=\Delta_{n+9} \Delta_{n+1}-\Delta_{n+5}^{2}
$$

- Next sequence $\Delta_{n}^{(6)}$ is also 40-antiperiodic, and takes values in $\{0, \pm 1, \pm 2\}$.


## Other $q$-metallic numbers

## Conjecture

Let $k \geqslant 1$ and $\ell \geqslant 0$ be two integers, and let $\Delta_{n}^{(\ell)}:=\Delta_{n}^{(\ell)}\left(\left[y_{k}\right]_{q}\right)$ denote as before the $\ell$-shifted sequence of Hankel determinants associated with the $q$-deformation of the metallic number $y_{k}$.
(a) The $k+2$ sequences $\Delta_{n}^{(0)}, \Delta_{n}^{(1)}, \ldots, \Delta_{n}^{(k+1)}$
(i) consist of $-1,0,1$ only,
(ii) are $2 k(k+1)$-periodic when $k$ is even and $2 k(k+1)$-antiperiodic (hence $4 k(k+1)$-periodic) when $k$ is odd,
(iii) satisfy the Somos-Gale-Robinson recurrence

$$
\Delta_{n+2 k+2}^{(\ell)} \Delta_{n}^{(\ell)}=\Delta_{n+2 k+1}^{(\ell)} \Delta_{n+1}^{(\ell)}-\left(\Delta_{n+k+1}^{(\ell)}\right)^{2} \quad \text { for all } n \geqslant 0
$$

(b) Next sequence $\Delta_{n}^{(k+2)}$ also satisfies (ii) and takes values in $\{0, \pm 1, \pm 2\}$.
(c) The $k+1$ pairs of consecutive shifted sequences $\left(\Delta_{n}^{(\ell)}, \Delta_{n}^{(\ell-1)}\right)$ with $\ell=1,2, \ldots, k+1$ are interconnected by the formula:

$$
\Delta_{n}^{(\ell)}=(-1)^{n+\frac{k(k+2 \ell+1)}{2}} \Delta_{n+k+1}^{(\ell-1)} \quad \text { for all } n \geqslant 0
$$

