Continued fractions, SL_2-tilings, and the Farey graph

Ian Short

Monday 25 March 2024

With Margaret Stanier, Matty van Son, and Andrei Zabolotskii EPSRC EP/W002817/1 & EP/W524098/1

Integer continued fractions

 $\frac{31}{13}$

$$\frac{31}{13} = 2 + \frac{5}{13}$$

$$\frac{31}{13} = 2 + \frac{5}{13} = 2 + \frac{1}{\frac{13}{5}}$$

$$\frac{31}{13} = 2 + \frac{5}{13}$$
$$= 2 + \frac{1}{\frac{13}{5}}$$
$$= 2 + \frac{1}{\frac{13}{5}}$$
$$= 2 + \frac{1}{2 + \frac{3}{5}}$$

$$\frac{31}{13} = 2 + \frac{5}{13}$$
$$= 2 + \frac{1}{\frac{13}{5}}$$
$$= 2 + \frac{1}{\frac{13}{5}}$$
$$= 2 + \frac{1}{2 + \frac{1}{\frac{5}{3}}}$$

$$\frac{31}{13} = 2 + \frac{5}{13}$$

$$= 2 + \frac{1}{\frac{13}{5}}$$

$$= 2 + \frac{1}{\frac{13}{5}}$$

$$= 2 + \frac{1}{2 + \frac{1}{\frac{5}{3}}}$$

$$= 2 + \frac{1}{2 + \frac{1}{\frac{1}{1 + \frac{2}{3}}}}$$

$$\begin{array}{rcl} \frac{31}{13} & = & 2 + \frac{5}{13} \\ & = & 2 + \frac{1}{\frac{13}{5}} \\ & = & 2 + \frac{1}{\frac{13}{5}} \\ & = & 2 + \frac{1}{2 + \frac{1}{\frac{5}{3}}} \\ & = & 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{3}{2}}}} \end{array}$$

2 / 47

 $\frac{31}{13} = 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}}$

 $\frac{31}{13}$

$$\frac{31}{13} = 2 + \frac{1}{\frac{13}{5}}$$

$$\frac{31}{13} = 2 + \frac{1}{\frac{13}{5}} \\ = 2 + \frac{1}{3 - \frac{2}{5}}$$

$$\frac{31}{13} = 2 + \frac{1}{\frac{13}{5}} \\ = 2 + \frac{1}{3 + \frac{1}{-\frac{5}{2}}}$$

$$\frac{31}{13} = 2 + \frac{1}{\frac{13}{5}}$$

$$= 2 + \frac{1}{3 + \frac{1}{-\frac{5}{2}}}$$

$$= 2 + \frac{1}{3 + \frac{1}{-\frac{5}{2}}}$$

$$= 2 + \frac{1}{3 + \frac{1}{-3 + \frac{1}{2}}}$$

$$\frac{31}{13} = 3 + \frac{1}{-2 + \frac{1}{3 + \frac{1}{-3}}}$$

Positive integer continued fractions

Finite continued fractions for rationals.

Infinite continued fractions for irrationals.

Unique expansions in both cases.

Integer continued fractions

Finite continued fractions for rationals.

Infinite continued fractions may represent rational or irrationals, or may diverge.

No uniqueness.

Minus continued fractions

Continued fraction approximants

Convergents

Calculating convergents

$$\begin{pmatrix} A_n & A_{n-1} \\ B_n & B_{n-1} \end{pmatrix} = \begin{pmatrix} b_1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b_2 & -1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} b_n & -1 \\ 1 & 0 \end{pmatrix}$$

Modular group

All these matrices belong to the modular group

$$\mathsf{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

The hyperbolic plane

Definition The hyperbolic plane is the upper half-plane

 $\mathbb{H} = \{ z : \operatorname{Im} z > 0 \}$

Remark The group $SL_2(\mathbb{Z})$ acts on \mathbb{H} as a group of isometries.

Definition The *ideal boundary* of \mathbb{H} is $\mathbb{R} \cup \{\infty\}$. It is not part of the hyperbolic plane.

Definition The *Farey graph* is the graph with vertices $\mathbb{Q} \cup \{\infty\}$ and with edges comprising pairs of vertices a/b and c/d that satisfy $ad - bc = \pm 1$.

The edges are represented by hyperbolic lines.

Automorphism group $\cong C_2 * C_3$

generate the group $SL_2(\mathbb{Z})$ (modulo $\pm I$).

generate the group $SL_2(\mathbb{Z})$ (modulo $\pm I$).

Key property $SL_2(\mathbb{Z})$ is the group of orientation preserving automorphisms of the Farey graph.

It acts transitively on directed edges.

$$\frac{3}{4} = 0 - \frac{1}{-1 - \frac{1}{2 - \frac{1}{-1}}}$$

$$\frac{3}{4} = 0 - \frac{1}{-1 - \frac{1}{2 - \frac{1}{-1}}}$$

 $\frac{A_1}{B_1} = 0,$

$$\frac{3}{4} = 0 - \frac{1}{-1 - \frac{1}{2 - \frac{1}{-1}}}$$

$$\frac{A_1}{B_1} = 0, \quad \frac{A_2}{B_2} = -\frac{1}{-1} = 1,$$

$$\frac{3}{4} = 0 - \frac{1}{-1 - \frac{1}{2 - \frac{1}{-1}}}$$

$$\frac{A_1}{B_1} = 0, \quad \frac{A_2}{B_2} = -\frac{1}{-1} = 1, \quad \frac{A_3}{B_3} = -\frac{1}{-1 - \frac{1}{2}} = \frac{2}{3},$$

$$\frac{3}{4} = 0 - \frac{1}{-1 - \frac{1}{2 - \frac{1}{-1}}}$$

$$\frac{A_1}{B_1} = 0, \quad \frac{A_2}{B_2} = -\frac{1}{-1} = 1, \quad \frac{A_3}{B_3} = -\frac{1}{-1 - \frac{1}{2}} = \frac{2}{3}, \quad \frac{A_4}{B_4} = -\frac{1}{-1 - \frac{1}{2}} = \frac{3}{4}$$
$$-1 - \frac{1}{2 - \frac{1}{-1}} = \frac{3}{4}$$
$$17/47$$

A.F. Beardon, M. Hockman, & I. Short, Michigan Math. J., 2012

A.F. Beardon, M. Hockman, & I. Short, Michigan Math. J., 2012

A.F. Beardon, M. Hockman, & I. Short, Michigan Math. J., 2012

A.F. Beardon, M. Hockman, & I. Short, Michigan Math. J., 2012

Theorem For $n \in \mathbb{N} \cup \{\infty\}$, there is a one-to-one corresondence

 $\left\{\begin{array}{ll} \text{integer continued} \\ \text{fractions of length } n \end{array}\right\} \quad \longleftrightarrow \quad \left\{\begin{array}{ll} \text{paths of length } n \\ \text{beginning at } \infty \end{array}\right\}.$

A.F. Beardon, M. Hockman, & I. Short, Michigan Math. J., 2012

Closed paths in the Farey graph

Theorem There are one-to-one correspondences

$$\begin{aligned} \mathsf{SL}_2(\mathbb{Z}) \setminus \left\{ \begin{array}{l} \text{closed paths} \\ \text{of length } n \end{array} \right\} &\longleftrightarrow \quad \left\{ \begin{array}{l} \text{continued fractions of length } n \text{ with} \\ \text{final two convergents } 0 \text{ and } \infty \end{array} \right\} \\ &\longleftrightarrow \quad \left\{ \begin{bmatrix} b_1, b_2, \dots, b_n \end{bmatrix} \in \mathbb{Z}^n : \begin{pmatrix} b_1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b_2 & -1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} b_n & -1 \\ 1 & 0 \end{pmatrix} = \pm I \right\}. \end{aligned}$$

S. Morier-Genoud & V. Ovsienko, Jahresber. Dtsch. Math. Ver., 2019

L.R. Ford, Amer. Math. Monthly, 1938

Theorem For $n \in \mathbb{N} \cup \{\infty\}$, there is a one-to-one correspondence

$$\left\{\begin{array}{l} \text{integer continued} \\ \text{fractions of length } n \end{array}\right\} \quad \longleftrightarrow \quad \left\{\begin{array}{l} \text{chains of Ford circles of} \\ \text{length } n \text{ beginning at } \infty \end{array}\right\}.$$

Real continued fractions

Theorem For $n \in \mathbb{N} \cup \{\infty\}$, there is a one-to-one correspondence

 $\left\{ \begin{array}{c} \text{real continued fractions} \\ \text{of length } n \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \text{chains of horocycles of} \\ \text{length } n \text{ beginning at } \infty \end{array} \right\}.$

A.F. Beardon and I. Short, Amer. Math. Monthly, 2014

Coxeter's frieze patterns

Coxeter's friezes

H.S.M. Coxeter, Acta Arith., 1971
Coxeter's friezes

H.S.M. Coxeter, Acta Arith., 1971

H.S.M. Coxeter, Acta Arith., 1971

Definition An infinite strip of integers of this type is called a *positive integer frieze*.

H.S.M. Coxeter, Acta Arith., 1971

Definition An infinite strip of integers of this type is called a *positive integer frieze*.

Theorem Every positive integer frieze is periodic.

H.S.M. Coxeter, Acta Arith., 1971

Definition An infinite strip of integers of this type is called a *positive integer frieze*.

Theorem Every positive integer frieze is periodic.

Observation Each positive integer frieze is determined by its *quiddity cycle*, the periodic part of its third row.

H.S.M. Coxeter, Acta Arith., 1971

Triangulated polygons

Triangulated polygons

Triangulated polygons

J.H. Conway & H.S.M. Coxeter, Math. Gaz., 1973

$\mathsf{SL}_2\text{-tilings}$

Definition

Let R be a commutative ring with multiplicative identity 1, and let

$$\mathsf{SL}_2(R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in R, ad - bc = 1 \right\}.$$

Definition Let R be a commutative ring with multiplicative identity 1, and let

$$\mathsf{SL}_2(R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in R, ad - bc = 1 \right\}.$$

Definition An SL_2 -tiling over R is a bi-infinite array of elements of R such that any two-by-two submatrix belongs to $SL_2(R)$.

		÷							÷			
5	9	4	7	17			13	8	3	4	5	
1	2	1	2	5			8	5	2	3	4	
 2	5	3	7	18			3	2	1	2	3	
1	3	2	5	13			4	3	2	5	8	
3	10	7	18	47			5	4	3	8	13	

Observation
$$e \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b \\ d & e \end{vmatrix} \begin{vmatrix} e & f \\ h & i \end{vmatrix} - \begin{vmatrix} b & c \\ e & f \end{vmatrix} \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Definition An SL_2 -tiling is *tame* if the determinant of each three-by-three submatrix is 0.

Observation
$$e \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b \\ d & e \end{vmatrix} \begin{vmatrix} e & f \\ h & i \end{vmatrix} - \begin{vmatrix} b & c \\ e & f \end{vmatrix} \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Theorem Positive integer SL₂-tilings are tame.

.

 11	8	5	2	5	8	11	
26	19	12	5	13	21	29	
41	30	19	8	21	34	47	
56	41	26	11	29	47	65	

Definition A wild SL₂-tiling is an SL₂-tiling that is not tame.

Informally speaking, wild integer SL_2 -tilings comprise tame blocks demarcated by wild zeros.

				-					
*	*	*	*	*	*	*	1	*	
*	*	*	*	*	*	-1	0	1	
*	*	*	*	*	*	*	$^{-1}$	*	
*	*	*	*	-1	*	*	*	*	
*	*	*	1	0	$^{-1}$	*	*	*	
*	*	*	*	1	*	*	*	*	
1	*	*	*	*	*	*	*	*	
0	1	*	*	*	*	*	*	*	
$^{-1}$	*	*	*	*	*	*	*	*	

Classifying SL_2 -tilings using the Farey graph

Triangulated polygons in the Farey graph

Triangulated polygons in the Farey graph

Triangulated polygons in the Farey graph

J.H. Conway & H.S.M. Coxeter, *Math. Gaz.*, 1973 S. Morier-Genoud, V. Ovsienko & S. Tabachnikov, *Enseign. Math.*, 2015

Paths on a tame SL₂-tiling

	61	50	39	28	17	6	7	8	9	10	11	
	50	41	32	23	14	5	6	7	8	9	10	
	39	32	25	18	11	4	5	6	7	8	9	
	28	23	18	13	8	3	4	5	6	7	8	
	17	14	11	8	5	2	3	4	5	6	7	
	6	5	4	3	2	1	2	3	4	5	6	
	7	6	5	4	3	2	5	8	11	14	17	
	8	7	6	5	4	3	8	13	18	23	28	
	9	8	7	6	5	4	11	18	25	32	39	
	10	9	8	7	6	5	14	23	32	41	50	
	11	10	9	8	7	6	17	28	39	50	61	
						•						

Classifying tame SL₂-tilings

I. Short, Trans. Amer. Math. Soc., 2023

F. Bergeron & C. Reutenauer, Illinois J. Math., 2010

Positive integer SL_2 -tilings

C. Bessenrodt, T. Holm, & P. Jørgensen, Adv. Math., 2017

Ford circles and SL₂-tilings

R.C. Penner, Comm. Math. Phys., 1987 A. Felikson, O. Karpenkov, K. Serhiyenko, P. Tumarkin, arXiv:2306.17118, 2023

Ford circles and SL₂-tilings

R.C. Penner, Comm. Math. Phys., 1987 A. Felikson, O. Karpenkov, K. Serhiyenko, P. Tumarkin, arXiv:2306.17118, 2023

I. Short, M. van Son, & A. Zabolotskii, arXiv:2312.12953, 2024

Infinite friezes

K. Baur, M.J. Parsons, & M. Tschabold, European J. Combin., 2016

Theorem There is a one-to-one correspondence

$$\mathsf{SL}_2(\mathbb{Z}) \Big\backslash \left\{ \begin{array}{l} \mathsf{bi-infinite paths in the} \\ \mathsf{Farey graph} \end{array} \right\} \quad \longleftrightarrow \quad \{\pm 1\} \Big\backslash \left\{ \begin{array}{l} \mathsf{tame infinite friezes} \\ \mathsf{over} \ \mathbb{Z} \end{array} \right\}.$$

Classifying positive tame infinite friezes

K. Baur, M.J. Parsons, & M. Tschabold, European J. Combin., 2016

Theorem A bi-infinite sequence of positive integers is the quiddity sequence of a *positive* infinite frieze if and only if it does not contain a Conway–Coxeter sequence* as a subsequence.

I. Short, Trans. Amer. Math. Soc., 2023
Periodic infinite positive integer friezes

K. Baur, I. Canakci, K.M. Jacobsen, M.C. Kulkarni, & G. Todorov, *J. Alg. and its Appl.*, To appear

Finite friezes

Friezes

I. Short, Trans. Amer. Math. Soc., 2023

Theorem^{*} There is a one-to-one correspondence

 $\{ \text{ regular positive real friezes} \} \quad \longleftrightarrow \quad \{ \text{ bracelets of horocycles} \}.$

Bracelet measurements

$$a_{i-1}b_i - b_{i-1}a_i = 1$$
$$m_{i,j} = a_i b_j - b_i a_j = \exp \frac{1}{2}\rho_{i,j}$$

Wild SL_2-tilings

Modelling wild tilings

Wild tilings and twisted paths

