$$
\begin{aligned}
& \text { March 26, } 2024 \\
& \text { Durham }
\end{aligned}
$$

Generalising Euler's Tonnetz
Konstanze Rietsch

TENTAMEN novae theoriae MVSICAE EX
CERTISSIMIS HARMONIAE PRINCIPIIS

DLLVCIDE EXPOSITAE.
APCTORE
LEONHARDO EVLERO.

PETROPOLI, EX TYPOGRAPHIA ACADEMIAE SCIENTLARVM. dibecexmix.

DE GENERE DIATONICO-CHROMATICO. 547
B, hocque pacto fumendis ocauis totum inftrumentum erit rite attemperaturn.
6. 13. Totus autem hic temperationis proceffis ex adiceta hic figura diftnctius percipietur.

Cum ergo foni $\mathrm{E}, \mathrm{H}, \mathrm{Gs}, \mathrm{Fs}_{\mathbf{z}}$ Ds et B duplici modo tum per quintas tum per tertias determinentur, ex hoc non contemnendum obtinebitur libfiaium in temperandis inftrumentis, cum error qui forte fit conmific, flatim percipi et corrigi queat.

BACKGROUND
Euler's 1739 bods on a new music theory has the following planar arrangemat of the 12 notes of the chromatic scale:

DE GENERE DIATONICO-CHROMATICO. 549
B, hocque pasto furmendis ofauis notum infrumennum crit rite attemperatum.
5. 13. Torus aurum hic temperationis procefilis ex adiceta hic figure diftnctius percipietur.

Cum ergo font $\mathrm{E}, \mathrm{H}, \mathrm{G}_{s}, \mathrm{Fs}_{3}$, D_{s} et B duplici mono tum per quintas tum per tertial determinenur, ex hoc non contemnendum obtinebitur fortidium in temperandis in-
frumentis, cum error quit forte fit conimifilis, flatim percipi et corrigi quest.

Continued infinitely in its more modern depiction $\hat{\rho}$ it periodically tiles the plane (or tiles a torus, after identifying octaves).
The triangle encode all major 1 and minor P triads.
The tonnetr is foundational to "Neo Riemannian music theory": Hugo Riemann 1880 Richard Conn 1990's

Music basics
equal temperament/identifying octaves
corresponds to: $\mathbb{Z} / 12 \mathbb{Z}$

Generalised Tonnetz
Lets be a triangulated surface. More generally, we may replace triangles by polygons.

Notation:

- $V=V_{0} \cup V_{1} \cup V_{2}$ set of vertices, edges and faces
- V is a graded poset with partial order \leq of inclusion.
- Write $\tau \prec \sigma$ if σ covers τ (so $\tau \leq \sigma$ and $\operatorname{dim}(\sigma)=\operatorname{dim}(\tau)+1$)

Def: A generalised tonnetz is a map:
$T: V \rightarrow$ Multisets in $\mathbb{Z}\left(\Omega \mathbb{Z}\right.$ (or $\left.N=\left\{A, A_{1}^{*}, C, \ldots, G, G^{*}\right\}\right)$
satisfying the following coherence conditions:

- upwards coherence: for any $\tau \in V_{0} \cup V_{1}$ there is a bijection:

$$
d_{\tau}:\{\sigma \mid \sigma \succ \tau\} \longrightarrow T(\tau)
$$

such that $d_{\tau}(\sigma) \in T(\sigma)$ for any σ.

- downwards coherence: for any $\tau \in V_{1} \cup V_{2}$ there is a bijection:

$$
\partial_{\tau}:\{\varepsilon \mid \varepsilon<\tau\} \longrightarrow T(\tau)
$$

such that $\partial_{\tau}(\varepsilon) \in T(\varepsilon)$ for any ε.

Euler example:

$$
\begin{aligned}
& T\left(\varepsilon_{1}\right)=\left\{c_{1}, c, c, c, c, c\right\} \quad T\left(\tau_{1}\right)=\left\{E_{1}, G\right\} \\
& T\left(\varepsilon_{2}\right)=\left\{\varepsilon_{1} \varepsilon_{1}, \varepsilon_{1}, \varepsilon_{,}, E\right\} \quad T\left(\tau_{2}\right)=\{C, G\} \\
& T\left(\varepsilon_{3}\right)=\{G, G, G, G, G, G\} \quad T\left(\tau_{3}\right)=\{c, \varepsilon\} \\
& T(\sigma)=\{C, E, G\} \\
& \text { mg: } \partial_{\tau_{1}}\left(\varepsilon_{2}\right)=E \quad d_{\tau_{1}}(\sigma)=G \\
& \partial_{\tau_{1}}\left(\varepsilon_{3}\right)=G \quad d_{\tau_{1}}\left(\sigma^{\prime}\right)=E
\end{aligned}
$$

EULER EXAMPLE:

$$
\begin{aligned}
& T\left(\varepsilon_{1}\right)=\left\{c_{1}, c_{1}, c, c, c\right\} \quad T\left(\tau_{1}\right)=\left\{E_{1} G\right\} \\
& T\left(\varepsilon_{2}\right)=\left\{\varepsilon_{1} \varepsilon_{1} \varepsilon_{1} \varepsilon_{1}, \varepsilon, \varepsilon\right\} \quad T\left(\tau_{2}\right)=\left\{C_{1} G\right\} \\
& T\left(\varepsilon_{3}\right)=\{G, G, G, G, G, G\} \quad T\left(\tau_{3}\right)=\left\{C_{1}, \varepsilon\right\} \\
& T(\sigma)=\{C, E, G\} \\
& \text { g: } \quad \partial_{\tau_{1}}\left(\varepsilon_{2}\right)=E \quad d_{r_{1}}(\sigma)=G \\
& \partial_{\tau_{1}}\left(\varepsilon_{3}\right)=G \quad d_{\tau_{1}}\left(\sigma^{\prime}\right)=E \\
& \partial_{\tau}:\left\{\varepsilon_{2}, \varepsilon_{3}\right\} \rightarrow\left\{E_{1} G\right\}, \quad d_{\Gamma_{2}}:\left\{\sigma_{1} \sigma^{\prime}\right\} \rightarrow\left\{E_{1}, G\right\}
\end{aligned}
$$

from definition $\Rightarrow|T(\sigma)|=3$ So: face mo triad (in triangulated surface case)

$$
|T(\tau)|=2
$$

TRITONE tonnetz:

$$
T(\sigma)=\{G, B, D\}
$$

G-major trice

$$
T(\tau)=\{F, B\}
$$

tritons (major $4^{\text {th }}$)

$$
T(\varepsilon)=\{A, B, D b, E b, F, G\}
$$

wholetone scale

$$
T\left(\varepsilon^{\prime}\right)=\{F, A, C \#\} \cup\left\{F^{\#}, B b, D\right\}
$$ augmented triads

TRITONE tometz II:

$$
T(\sigma)=\{G, B, D\}
$$

G-major trial

$$
T(\tau)=\{F, B\}
$$

triton (major $4^{\text {th }}$)
$T(\varepsilon)=\left\{A, A, C^{\#}, D b, F_{1}, F\right\}$
augmented triad

$$
T\left(\varepsilon^{\prime}\right)=\{D, E b, E, F, F \#, G\}
$$

half a chromatic scale

$$
T\left(\varepsilon^{\prime \prime}\right)=\{G, G, A, A, B, B\}
$$

start of major scale

$$
T\left(\varepsilon^{\prime \prime \prime}\right)=\{F, A, C \#\} \cup\left\{E, A^{b}, C\right\}
$$

augmented triads

Same triads and dyads but different vertex sets \&e different symmetries!
Both examples live on a torus, but in one case the triangulation has 6 triangles, in the other it has 24.

TRITONE tomnetz II:

$$
T \sigma)=\{G, B, D\}
$$

G-major triced

$$
T(\tau)=\{F, B\}
$$

tritone (major $4^{\text {th }}$)
$T(\varepsilon)=\left\{A, A, C C^{\#}, D b, F, F\right\}$
angmanted tricad

$$
\Pi\left(\varepsilon^{\prime}\right)=\{D, E b, E, F, F \#, G\}
$$

heff a chromatic scale

$$
T\left(\varepsilon^{\prime \prime}\right)=\{G, G, A, A, B, B\}
$$

start of major scale
Symmetries
us.

$$
\left.T \varepsilon^{\prime \prime \prime}\right)=\left\{F_{1} A_{1} C \#\right\} \cup\left\{E, A_{1}, C\right\}
$$

angmented triads

Let (S, v) be fixed.

- For any vertex labeling $L: V_{0} \rightarrow N, T(\varepsilon)=\{\overbrace{\mathcal{L}(\varepsilon), L(\varepsilon), \ldots, L(\varepsilon)\}}^{\text {valency }}$

$$
\begin{aligned}
& T(\tau)=\left\{L\left(\varepsilon_{1}\right), L\left(\varepsilon_{2}\right)\right\} \\
& T(\sigma)=\left\{L\left(\varepsilon_{1}\right), L\left(\varepsilon_{2}\right), L\left(\varepsilon_{3}\right)\right\}
\end{aligned}
$$

defines a tonnetz that we call the vertex tonnetz associated to L.

- For any edge labeling $M: V_{1} \rightarrow P$ there is a eniqgere tonnetz T such that $T(\tau)=\{M(\tau), M(\tau)\}$. We call such a tonnetz an edge tonnetz.

Let (S, v) be fixed.

- For any vertex labeling $L: V_{0} \longrightarrow N$,

$$
\begin{aligned}
& T(\varepsilon)=\{\overbrace{L(\varepsilon), L(\varepsilon), \ldots, L(\varepsilon)\}}^{\text {valency }}\} \\
& T(\tau)=\left\{L\left(\varepsilon_{1}\right), L\left(\varepsilon_{2}\right)\right\} \\
& T(\sigma)=\left\{L\left(\varepsilon_{1}\right), L\left(\varepsilon_{2}\right), L\left(\varepsilon_{3}\right)\right\}
\end{aligned}
$$

defines a tonnetz that we call the vertex tonnetz associated to L.

- For any edge labeling $M: V_{1} \rightarrow \rho$ there is a eniquere tonnetz T such that $T(\tau)=\{M(\tau), M(\tau)\}$. We call such a tonnetz an edge tonnetz.
- the surface is the projective plane?
- roots of the chords are from wholetone scale:

Edge tonnetr example

- The triads are made up of essential notes from dominant $7^{\text {th }}$ and major $9^{\text {th }}$ chords.

Major/minor edge tonnetz examples of type B_{2}, C_{2}, G_{2}
$B_{2} \Rightarrow$

- four major triads, minor thirds apart.
- roots of the chords are from the diminished $7^{\text {th }}$

- periodic tiling of the plane giving a tonnes on a tories.

We can transpose exp or down by a tone and get two other versions, in total containing all 12 major triads.
C_{2}

- four minor triads, minor thirds apart
- roots of the chords are again

- periodic tiling of the plane giving a tonnetz on a torus.

We can transpose exp or down by a tone and get two other versions in total containing all 12 minor triads.
$G_{2} \underset{A}{\Longrightarrow D}$

- six major and six minor triads

$G_{2} \Longrightarrow D$

$$
{ }^{\text {ghe }}
$$

$$
9 \text { C }
$$

"Langlands dual" G_{2} tonnetz

$G_{2} D$

scuap major
Δ
\& minor

An edge tonnetz on a sphere encoding all major 9 chords
A major $9^{\text {th }}$ chord has 5 notes : major triad + major $7+$ major 9
Example: $\quad C \Delta 9=C-E-G-B-D$
in an edge tonnetz this can arise as edge labels of a quadrilateral, eg:

An edge tonnetz on a sphere encoding all major 9 chords
A major $9^{\text {th }}$ chord has 5 notes : major triad + major $7+$ major 9
Example: $\quad C \Delta 9=C-E-G-B-D$
in an edge tonnetz this can arise as edge labels
 of a quadrilateral.

fold along grey edges and identify along boundary

tetrahedron

An edge tonnetz on a sphere encoding all major 9 chords
A major $9^{\text {th }}$ chord has 5 notes : major triad + major $7+$ major 9 Example: $C \Delta 9=C-E-G-B-D$

fold along grey edges and identify along boundary

tetrahedron

Every major $9^{\text {th }}$ chord appears precisely once.
G 120° rotational symmetry transposes up by a major $3^{\text {rd }}$.

Fano, Heawood and diatonic $7^{\text {th }}$ chords
Let $\gamma(g)$ be the minimum number of colours needed to colour a "map" on a genus gog orrintable surface.

1890: Heawood The: for $g \geq 1$

$$
\gamma(g) \leqslant\left\lfloor\frac{7+\sqrt{1+48 g}}{2}\right\rfloor
$$

Heawood conjectured \ominus and proved it for $g=1$ (" 7 colour theorem" on a torus), using the "Jleawood graph".

- 1887-1939 at Durham University
- OBE in 1939 for his work as Secretary of the Durham Castle Restoration Fund.
(Maths History. St. Andrews)
wiki

Fano, Heawood and diatonic $7^{\text {th }}$ chords
1892 "Sui postulati fundamentali della geometria proiettiva" Giorn. Mat 30

Fano plane: $\mathbb{P}^{2}\left(\mathbb{F}_{2}\right) \triangleq \mathbb{F}_{2}^{3} \backslash\{(0,0,0)\}$

- 7 points, 7 lines
- 3 points on each line
- one line through any two points usual depiction:

Gino Fans

$$
1871-1952
$$

(Maths History. St. Andrews)

Fano, Heawood and diatonic $7^{\text {th }}$ chords
1892 "Sui postulati fundamentali della geometria proiettiva" Giorn. Mat 30

Fano plane: $\mathbb{P}^{2}\left(\mathbb{F}_{2}\right) \triangleq \mathbb{F}_{2}^{3} \backslash\{(0,0,0)\}$

- 7 points, 7 lines
- 3 points on each line
- one line through any two points
usual depiction:

each line segment should be completed to a closed curve
\Rightarrow complete graph on 7 vertices

Heawood's graph on the torus - revisited

Heawood's graph on the torus - revisited

or

The Fano plane is dual graph to Heawood's graph on the torus

This gives an embedding of the 'Fano plane' graph in a torus.

Fano, Heawood and diatonic $7^{\text {th }}$ chords
Label the vertices of the Fano plane with pitch classes of a major scale as follows:

C-major
Every line is a diatonic $7^{\text {th }}$ chard (with $5^{\text {th }}$ omitted)

$C-E-B$	$C \Delta$	major $7^{\text {th }}$
$D-F-C-C$	$D_{m 7}$	minor $7^{\text {th }}$
\vdots	\vdots	\vdots
$G-B-\mathbb{Z}-F$	$G 7$	dominant $7^{\text {th }}$

Fano, Heawood and diatonic $7^{\text {th }}$ chords
Label the vertices of the Fano plane with pitch classes of a major scale as follows:

General:

- Every line is a diatonic $7^{\text {th }}$ chard (with $5^{\text {th }}$ omitted)

$C-E-B-B$	$C \Delta$	major $7^{\text {th }}$
$D-F-A-C$	$D_{m 7}$	minor $7^{\text {th }}$
\vdots	\vdots	\vdots
$G-B-F-F$	$G 7$	dominant $7^{\text {th }}$

S- any two notes of the major scale belong to a unique diatonic $7^{\text {th }}$ chord (in shell voicing)

- any two diatonic $7^{\text {th }}$ chords (in shell voicing) have a unique pitch class in common.

Diatonic vertex tonnetz on a torus

- periodic picture for Fano-plane embedded in torus
- vertex labeling $(~(~ \leftrightarrow C, 2 \leftrightarrow D, \ldots)$

- 7 green tricongles \longleftrightarrow diatonic $7^{\text {th }}$ chords.
- remaining triangles 'transition' between them.

Thank You!

