Braids and q-rationals

Alexander Veselov
Loughborough, UK

Continuous Fractions and SL2-tilings, Durham, March 27, 2024

- Braid group B_{3} and $\operatorname{PSL}(2, \mathbb{Z})$
- Burau representation of B_{3} : specialization problem
- q-rationals and $\operatorname{PSL}(2, \mathbb{Z})_{q}$
- Singular set of q-rationals and faithful Burau specialisations

References

[MGO-2020] S. Morier-Genoud and V. Ovsienko q-deformed rationals and q-continued fractions. Forum Math. Sigma 8 (2020) e13,55 pp.
[LMGOV-2024] L. Leclere, S. Morier-Genoud, V. Ovsienko and A.V. On radius of convergence of q-deformed real numbers. Mosc. Math. J. 24:1 (2024), 1-19.
[MGOV-2024] S. Morier-Genoud, V. Ovsienko and A.V. Burau representation of braid groups and q-rationals. IMRN, rnad318 (2024), 1-10.

Artin's braid groups

Emil Artin, 1925: n-strand braid group \mathcal{B}_{n} is generated by $n-1$ elements $\sigma_{1}, \ldots, \sigma_{n-1}$ with braid relations

$$
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \quad i=1, \ldots, n-1
$$

and $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ when $|i-j|>1$.

Artin's braid groups

Emil Artin, 1925: n-strand braid group \mathcal{B}_{n} is generated by $n-1$ elements $\sigma_{1}, \ldots, \sigma_{n-1}$ with braid relations

$$
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \quad i=1, \ldots, n-1
$$

and $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ when $|i-j|>1$.

$\left(\beta_{x} \beta_{z}\right)^{3}$
braid group defining relations
Figure: Braid relations and centre of B_{3}

Braid group B_{3} and modular group

The modular group $\operatorname{PSL}(2, \mathbb{Z})=S L(2, \mathbb{Z}) / \pm I$ is generated by matrices $U=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, or, by S and $P=\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)$, satisfying relations $S^{2}=P^{3}=-1$:

$$
\operatorname{PSL}(2, \mathbb{Z})=<P, S \mid P^{3}=S^{2}=e>.
$$

Braid group B_{3} and modular group

The modular group $\operatorname{PSL}(2, \mathbb{Z})=S L(2, \mathbb{Z}) / \pm I$ is generated by matrices $U=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, or, by S and $P=\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)$, satisfying relations $S^{2}=P^{3}=-1$:

$$
\operatorname{PSL}(2, \mathbb{Z})=<P, S \mid P^{3}=S^{2}=e>.
$$

Important fact: $\operatorname{PSL}(2, \mathbb{Z})=\mathcal{B}_{3} / \mathbb{Z}$, where \mathbb{Z} is the centre of \mathcal{B}_{3}.

Braid group B_{3} and modular group

The modular group $\operatorname{PSL}(2, \mathbb{Z})=S L(2, \mathbb{Z}) / \pm I$ is generated by matrices $U=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, or, by S and $P=\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)$, satisfying relations $S^{2}=P^{3}=-1$:

$$
\operatorname{PSL}(2, \mathbb{Z})=<P, S \mid P^{3}=S^{2}=e>.
$$

Important fact: $\operatorname{PSL}(2, \mathbb{Z})=\mathcal{B}_{3} / \mathbb{Z}$, where \mathbb{Z} is the centre of \mathcal{B}_{3}.
Indeed, let $x=\sigma_{1} \sigma_{2}, y=\sigma_{2} \sigma_{1} \sigma_{2}$, then modulo braid relation

$$
y^{2}=\sigma_{2} \sigma_{1} \sigma_{2} \sigma_{2} \sigma_{1} \sigma_{2}=\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}=x^{3},
$$

so $\mathcal{B}_{3}=\left\langle x, y \mid x^{3}=y^{2}\right\rangle$. The homomorphism

$$
\chi: \mathcal{B}_{3} \rightarrow \operatorname{PSL}(2, \mathbb{Z}), \quad \chi(x)=P, \chi(y)=S
$$

is surjective with the $\operatorname{Ker} \chi=Z\left(\mathcal{B}_{3}\right) \cong \mathbb{Z}$ generated by $x^{3}=y^{2}$.

Braid group B_{3} and modular group

The modular group $\operatorname{PSL}(2, \mathbb{Z})=S L(2, \mathbb{Z}) / \pm I$ is generated by matrices $U=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, or, by S and $P=\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)$, satisfying relations $S^{2}=P^{3}=-1$:

$$
\operatorname{PSL}(2, \mathbb{Z})=<P, S \mid P^{3}=S^{2}=e>.
$$

Important fact: $\operatorname{PSL}(2, \mathbb{Z})=\mathcal{B}_{3} / \mathbb{Z}$, where \mathbb{Z} is the centre of \mathcal{B}_{3}.
Indeed, let $x=\sigma_{1} \sigma_{2}, y=\sigma_{2} \sigma_{1} \sigma_{2}$, then modulo braid relation

$$
y^{2}=\sigma_{2} \sigma_{1} \sigma_{2} \sigma_{2} \sigma_{1} \sigma_{2}=\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}=x^{3},
$$

so $\mathcal{B}_{3}=\left\langle x, y \mid x^{3}=y^{2}\right\rangle$. The homomorphism

$$
\chi: \mathcal{B}_{3} \rightarrow \operatorname{PSL}(2, \mathbb{Z}), \quad \chi(x)=P, \chi(y)=S
$$

is surjective with the $\operatorname{Ker} \chi=Z\left(\mathcal{B}_{3}\right) \cong \mathbb{Z}$ generated by $x^{3}=y^{2}$.
Thus χ is a nice representation of \mathcal{B}_{3} but it is not faithful...
Is there faithful one?

Burau representation of braid groups

Werner Burau, 1936: Burau representation $\rho_{n}: \mathcal{B}_{n} \rightarrow G L\left(n-1, \mathbb{Z}\left[t, t^{-1}\right]\right)$.
For $n=3$ the Burau representation $\rho_{3}: \mathcal{B}_{3} \rightarrow G L\left(2, \mathbb{Z}\left[t, t^{-1}\right]\right)$ is defined by

$$
\rho_{3}: \quad \sigma_{1} \quad \mapsto\left(\begin{array}{cc}
-t & 1 \\
0 & 1
\end{array}\right), \quad \sigma_{2} \quad \mapsto\left(\begin{array}{cc}
1 & 0 \\
t & -t
\end{array}\right)
$$

where t is a formal parameter. When $t=1$ we have canonical homomorphism $\mathcal{B}_{3} \rightarrow S_{3}$, while $t=-1$ corresponds to the representation χ.

Burau representation of braid groups

Werner Burau, 1936: Burau representation $\rho_{n}: \mathcal{B}_{n} \rightarrow G L\left(n-1, \mathbb{Z}\left[t, t^{-1}\right]\right)$.
For $n=3$ the Burau representation $\rho_{3}: \mathcal{B}_{3} \rightarrow G L\left(2, \mathbb{Z}\left[t, t^{-1}\right]\right)$ is defined by

$$
\rho_{3}: \quad \sigma_{1} \mapsto\left(\begin{array}{cc}
-t & 1 \\
0 & 1
\end{array}\right), \quad \sigma_{2} \mapsto\left(\begin{array}{cc}
1 & 0 \\
t & -t
\end{array}\right),
$$

where t is a formal parameter. When $t=1$ we have canonical homomorphism $\mathcal{B}_{3} \rightarrow S_{3}$, while $t=-1$ corresponds to the representation χ.

Burau used this representation to introduce the invariant of the link $L=L(\beta), \beta \in \mathcal{B}_{n}$ by the formula

$$
\Delta_{\iota}(t)=\frac{1-t}{1-t^{n}} \operatorname{det}\left(I-\rho_{n}(\beta)\right),
$$

which (up to a unit in $\mathbb{Z}\left[t, t^{-1}\right]$) turned out to be related to the Alexander polynomial (Alexander, 1928).

Faithfulness of Burau representation

Arnold, 1968; Magnus, Peluso, 1969: Burau representation of \mathcal{B}_{3} is faithful. However, we have seen that the specialisations with $t= \pm 1$ are not.

Faithfulness of Burau representation

Arnold, 1968; Magnus, Peluso, 1969: Burau representation of \mathcal{B}_{3} is faithful. However, we have seen that the specialisations with $t= \pm 1$ are not.

Burau specialisation problem (Bharathram and Birman):
At which complex specializations of $t \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ is the Burau representation ρ_{3} faithful?

Faithfulness of Burau representation

Arnold, 1968; Magnus, Peluso, 1969: Burau representation of \mathcal{B}_{3} is faithful. However, we have seen that the specialisations with $t= \pm 1$ are not.

Burau specialisation problem (Bharathram and Birman):
At which complex specializations of $t \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ is the Burau representation ρ_{3} faithful?

Scherich 2020: For $t \in \mathbb{R}$ the specialized Burau representation ρ_{3}^{t} is faithful when $t<0, t \neq-1$, and outside the interval $\frac{3-\sqrt{5}}{2} \leq t \leq \frac{3+\sqrt{5}}{2}$.

Faithfulness of Burau representation

Arnold, 1968; Magnus, Peluso, 1969: Burau representation of \mathcal{B}_{3} is faithful. However, we have seen that the specialisations with $t= \pm 1$ are not.

Burau specialisation problem (Bharathram and Birman):
At which complex specializations of $t \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ is the Burau representation ρ_{3} faithful?

Scherich 2020: For $t \in \mathbb{R}$ the specialized Burau representation ρ_{3}^{t} is faithful when $t<0, t \neq-1$, and outside the interval $\frac{3-\sqrt{5}}{2} \leq t \leq \frac{3+\sqrt{5}}{2}$.

Morier-Genoud, Ovsienko and AV 2023: The specialized Burau representation ρ_{3}^{t} is faithful for all $t \in \mathbb{C}^{*}$ outside the annulus

$$
3-2 \sqrt{2} \leq\left|t_{0}\right| \leq 3+2 \sqrt{2}
$$

Conjecture (MGOV): The specialized Burau representation ρ_{3}^{t} is faithful for all $t \in \mathbb{C}^{*}$ outside the annulus

$$
\frac{3-\sqrt{5}}{2} \leq|t| \leq \frac{3+\sqrt{5}}{2}
$$

q-deformed modular group $\operatorname{PSL}(2, \mathbb{Z})_{q}$ and q-rationals

Morier-Genoud, Ovsienko 2020: q-deformed modular group $\operatorname{PSL}(2, \mathbb{Z})_{q}$ is a subgroup of $P G L\left(2, \mathbb{Z}\left[q, q^{-1}\right]\right)$ generated by

$$
R_{q}:=\left(\begin{array}{ll}
q & 1 \\
0 & 1
\end{array}\right), \quad L_{q}:=\left(\begin{array}{cc}
1 & 0 \\
1 & q^{-1}
\end{array}\right) .
$$

When $q=1$ we get the standard generators of $\operatorname{SL}(2, \mathbb{Z})$, so we can define q-analogues M_{q} for every $M \in S L(2, \mathbb{Z})$.

q-deformed modular group $\operatorname{PSL}(2, \mathbb{Z})_{q}$ and q-rationals

Morier-Genoud, Ovsienko 2020: q-deformed modular group $\operatorname{PSL}(2, \mathbb{Z})_{q}$ is a subgroup of $\operatorname{PGL}\left(2, \mathbb{Z}\left[q, q^{-1}\right]\right)$ generated by

$$
R_{q}:=\left(\begin{array}{ll}
q & 1 \\
0 & 1
\end{array}\right), \quad L_{q}:=\left(\begin{array}{cc}
1 & 0 \\
1 & q^{-1}
\end{array}\right) .
$$

When $q=1$ we get the standard generators of $S L(2, \mathbb{Z})$, so we can define q-analogues M_{q} for every $M \in S L(2, \mathbb{Z})$.
There is a natural linear-fractional action of $\operatorname{PSL}(2, \mathbb{Z})_{q}$ on the space $\mathbb{Z}(q)$ of rational functions in q with integer coefficients.

The q-rationals are the functions from $\mathbb{Z}(q)$ in the orbit of any point from the set $\{0,1, \infty\}$ for this action.

q-deformed modular group $\operatorname{PSL}(2, \mathbb{Z})_{q}$ and q-rationals

Morier-Genoud, Ovsienko 2020: q-deformed modular group $\operatorname{PSL}(2, \mathbb{Z})_{q}$ is a subgroup of $\operatorname{PGL}\left(2, \mathbb{Z}\left[q, q^{-1}\right]\right)$ generated by

$$
R_{q}:=\left(\begin{array}{ll}
q & 1 \\
0 & 1
\end{array}\right), \quad L_{q}:=\left(\begin{array}{cc}
1 & 0 \\
1 & q^{-1}
\end{array}\right) .
$$

When $q=1$ we get the standard generators of $S L(2, \mathbb{Z})$, so we can define q-analogues M_{q} for every $M \in S L(2, \mathbb{Z})$.
There is a natural linear-fractional action of $\operatorname{PSL}(2, \mathbb{Z})_{q}$ on the space $\mathbb{Z}(q)$ of rational functions in q with integer coefficients.

The q-rationals are the functions from $\mathbb{Z}(q)$ in the orbit of any point from the set $\{0,1, \infty\}$ for this action.

This agrees with the notion of q-integers due to Euler and Gauss:

$$
\begin{aligned}
{[n]_{q} } & :=1+q+q^{2}+\ldots+q^{n-1} \\
{[-n]_{q} } & :=-q^{-1}-q^{-2} \ldots-q^{-n} .
\end{aligned}
$$

q-deformed continued fractions

Let $\frac{r}{s}=\left[a_{1}, \ldots, a_{2 m}\right]$ be the continued fraction expansion and consider the corresponding matrix decompositions

$$
\begin{gathered}
M\left(a_{1}, \ldots, a_{2 m}\right):=\left(\begin{array}{ll}
r & v \\
s & u
\end{array}\right)=R^{a_{1}} L^{a_{2}} \cdots R^{a_{2 m-1}} L^{a_{2 m}}, \\
M_{q}\left(a_{1}, \ldots, a_{2 m}\right):=\left(\begin{array}{cc}
\mathcal{R}(q) & \mathcal{V}(q) \\
\mathcal{S}(q) & \mathcal{U}(q)
\end{array}\right)=R_{q}^{a_{1}} L_{q}^{a_{2}} \cdots R_{q}^{a_{2 m-1}} L_{q}^{a_{2 m}} .
\end{gathered}
$$

q-deformed continued fractions

Let $\frac{r}{s}=\left[a_{1}, \ldots, a_{2 m}\right]$ be the continued fraction expansion and consider the corresponding matrix decompositions

$$
\begin{gathered}
M\left(a_{1}, \ldots, a_{2 m}\right):=\left(\begin{array}{ll}
r & v \\
s & u
\end{array}\right)=R^{a_{1}} L^{a_{2}} \cdots R^{a_{2 m-1}} L^{a_{2 m}}, \\
M_{q}\left(a_{1}, \ldots, a_{2 m}\right):=\left(\begin{array}{cc}
\mathcal{R}(q) & \mathcal{V}(q) \\
\mathcal{S}(q) & \mathcal{U}(q)
\end{array}\right)=R_{q}^{a_{1}} L_{q}^{a_{2}} \cdots R_{q}^{a_{2 m-1}} L_{q}^{a_{2 m}} .
\end{gathered}
$$

The q-analogue of a rational $\frac{r}{s}$ is given by

$$
\left[\frac{r}{s}\right]_{q}:=\frac{\mathcal{R}(q)}{\mathcal{S}(q)}
$$

q-deformed continued fractions

Let $\frac{r}{s}=\left[a_{1}, \ldots, a_{2 m}\right]$ be the continued fraction expansion and consider the corresponding matrix decompositions

$$
\begin{gathered}
M\left(a_{1}, \ldots, a_{2 m}\right):=\left(\begin{array}{ll}
r & v \\
s & u
\end{array}\right)=R^{a_{1}} L^{a_{2}} \cdots R^{a_{2 m-1}} L^{a_{2 m}}, \\
M_{q}\left(a_{1}, \ldots, a_{2 m}\right):=\left(\begin{array}{cc}
\mathcal{R}(q) & \mathcal{V}(q) \\
\mathcal{S}(q) & \mathcal{U}(q)
\end{array}\right)=R_{q}^{a_{1}} L_{q}^{a_{2}} \cdots R_{q}^{a_{2 m-1}} L_{q}^{a_{2 m}} .
\end{gathered}
$$

The q-analogue of a rational $\frac{r}{s}$ is given by

$$
\left[\frac{r}{s}\right]_{q}:=\frac{\mathcal{R}(q)}{\mathcal{S}(q)}
$$

For example, for $2=1+\frac{1}{1}=[1,1]$ we have

$$
M(1,1)=R L=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right), \quad M_{q}(1,1)=R_{q} L_{q}=\left(\begin{array}{cc}
1+q & q^{-1} \\
1 & q^{-1}
\end{array}\right)
$$

so $[2]_{q}=1+q$ in agreement with Euler and Gauss.

Properties of polynomials $\mathcal{R}(q)$ and $\mathcal{S}(q)$

Suppose that $\frac{r}{s} \geq 1$.
Morier-Genoud, Ovsienko 2020: The polynomials \mathcal{R} and \mathcal{S} have positive integer coefficients and satisfy the following "reflection and mirror" properties:

$$
\left[\frac{s}{r}\right]_{q}=\frac{\mathcal{S}\left(q^{-1}\right)}{\mathcal{R}\left(q^{-1}\right)}, \quad\left[-\frac{r}{s}\right]_{q}=-\frac{\mathcal{R}\left(q^{-1}\right)}{q \mathcal{S}\left(q^{-1}\right)}
$$

Properties of polynomials $\mathcal{R}(q)$ and $\mathcal{S}(q)$

Suppose that $\frac{r}{s} \geq 1$.
Morier-Genoud, Ovsienko 2020: The polynomials \mathcal{R} and \mathcal{S} have positive integer coefficients and satisfy the following "reflection and mirror" properties:

$$
\left[\frac{s}{r}\right]_{q}=\frac{\mathcal{S}\left(q^{-1}\right)}{\mathcal{R}\left(q^{-1}\right)}, \quad\left[-\frac{r}{s}\right]_{q}=-\frac{\mathcal{R}\left(q^{-1}\right)}{q \mathcal{S}\left(q^{-1}\right)}
$$

Leclere, Morier-Genoud, Ovsienko, AV 2021 For every rational $\frac{r}{s}$ the roots of the polynomials \mathcal{R} and \mathcal{S} belong to the open annulus

$$
3-2 \sqrt{2}<|q|<3+2 \sqrt{2} .
$$

Properties of polynomials $\mathcal{R}(q)$ and $\mathcal{S}(q)$

Suppose that $\frac{r}{s} \geq 1$.
Morier-Genoud, Ovsienko 2020: The polynomials \mathcal{R} and \mathcal{S} have positive integer coefficients and satisfy the following "reflection and mirror" properties:

$$
\left[\frac{s}{r}\right]_{q}=\frac{\mathcal{S}\left(q^{-1}\right)}{\mathcal{R}\left(q^{-1}\right)}, \quad\left[-\frac{r}{s}\right]_{q}=-\frac{\mathcal{R}\left(q^{-1}\right)}{q \mathcal{S}\left(q^{-1}\right)}
$$

Leclere, Morier-Genoud, Ovsienko, AV 2021 For every rational $\frac{r}{s}$ the roots of the polynomials \mathcal{R} and \mathcal{S} belong to the open annulus

$$
3-2 \sqrt{2}<|q|<3+2 \sqrt{2}
$$

Conjecture (LMGOV) For every rational $\frac{r}{s}$ the roots of the polynomials \mathcal{R} and \mathcal{S} belong to the open annulus

$$
\frac{3-\sqrt{5}}{2}<|q|<\frac{3+\sqrt{5}}{2}
$$

Example (MGO 2020): Fibonacci polynomials

Let F_{n} be the $n^{\text {th }}$ Fibonacci number, $\frac{F_{n+1}}{F_{n}}$ are the convergents for $\varphi=\frac{1+\sqrt{5}}{2}$,

$$
\left[\frac{F_{n+1}}{F_{n}}\right]_{q}=: \frac{\tilde{\mathcal{F}}_{n+1}(q)}{\mathcal{F}_{n}(q)}
$$

be their q-deformed versions. The polynomials $\mathcal{F}_{n}(q)$ and $\tilde{\mathcal{F}}_{n}(q)$ are of degree $n-2$ (for $n \geq 2$) and are mirror of each other:

$$
\tilde{\mathcal{F}}_{n}(q)=q^{n-2} \mathcal{F}_{n}\left(q^{-1}\right)
$$

Example (MGO 2020): Fibonacci polynomials

Let F_{n} be the $n^{\text {th }}$ Fibonacci number, $\frac{F_{n+1}}{F_{n}}$ are the convergents for $\varphi=\frac{1+\sqrt{5}}{2}$,

$$
\left[\frac{F_{n+1}}{F_{n}}\right]_{q}=: \frac{\tilde{\mathcal{F}}_{n+1}(q)}{\mathcal{F}_{n}(q)}
$$

be their q-deformed versions. The polynomials $\mathcal{F}_{n}(q)$ and $\tilde{\mathcal{F}}_{n}(q)$ are of degree $n-2$ (for $n \geq 2$) and are mirror of each other:

$$
\tilde{\mathcal{F}}_{n}(q)=q^{n-2} \mathcal{F}_{n}\left(q^{-1}\right) .
$$

The Fibonacci polynomials $\mathcal{F}_{n}(q)$ are determined by the recurrence

$$
\mathcal{F}_{n+2}(q)=[3]_{q} \mathcal{F}_{n}(q)-q^{2} \mathcal{F}_{n-2}(q), \quad[3]_{q}=1+q+q^{2}
$$

with $\mathcal{F}_{0}(q)=1, \mathcal{F}_{2}(q)=1+q ; \quad \mathcal{F}_{1}(q)=1, \mathcal{F}_{3}(q)=1+q+q^{2}:$

$$
\begin{aligned}
{\left[\frac{8}{5}\right]_{q} } & =\frac{1+2 q+2 q^{2}+2 q^{3}+q^{4}}{1+2 q+q^{2}+q^{3}} \\
{\left[\frac{13}{8}\right]_{q} } & =\frac{1+2 q+3 q^{2}+3 q^{3}+3 q^{4}+q^{5}}{1+2 q+2 q^{2}+2 q^{3}+q^{4}}, \\
{\left[\frac{21}{13}\right]_{q} } & =\frac{1+3 q+4 q^{2}+5 q^{3}+4 q^{4}+3 q^{5}+q^{6}}{1+3 q+3 q^{2}+3 q^{3}+2 q^{4}+q^{5}} .
\end{aligned}
$$

q-deformed irrationals

Suppose that a sequence of rationals $\frac{r_{m}}{s_{m}}$ converges to an irrational number x. Morier-Genoud, Ovsienko 2020: The coefficients of the Taylor series of rational functions $\frac{\mathcal{R}_{m}(q)}{\mathcal{S}_{m}(q)}$ stabilize as m grows.

q-deformed irrationals

Suppose that a sequence of rationals $\frac{r_{m}}{s_{m}}$ converges to an irrational number x. Morier-Genoud, Ovsienko 2020: The coefficients of the Taylor series of rational functions $\frac{\mathcal{R}_{m}(q)}{\mathcal{S}_{m}(q)}$ stabilize as m grows.
This allows to define a q-deformation $[x]_{q}$ as Taylor series with integer coefficients. In particular, for the golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$ we have

$$
[\varphi]_{q}=\frac{q^{2}+q-1+\sqrt{\left(q^{2}+3 q+1\right)\left(q^{2}-q+1\right)}}{2 q}
$$

with the radius of convergence $R=\frac{3-\sqrt{5}}{2}$.

q-deformed irrationals

Suppose that a sequence of rationals $\frac{r_{m}}{s_{m}}$ converges to an irrational number x.
Morier-Genoud, Ovsienko 2020: The coefficients of the Taylor series of rational functions $\frac{\mathcal{R}_{m}(q)}{\mathcal{S}_{m}(q)}$ stabilize as m grows.
This allows to define a q-deformation $[x]_{q}$ as Taylor series with integer coefficients. In particular, for the golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$ we have

$$
[\varphi]_{q}=\frac{q^{2}+q-1+\sqrt{\left(q^{2}+3 q+1\right)\left(q^{2}-q+1\right)}}{2 q}
$$

with the radius of convergence $R=\frac{3-\sqrt{5}}{2}$.
Conjecture [LMGOV 2021] For every real $x>0$ the radius of convergence $R(x)$ of the series $[x]_{q}$ satisfies the inequality

$$
R(x) \geq R(\varphi)=\frac{3-\sqrt{5}}{2}
$$

and the equality holding only for x which are $\operatorname{PSL}(2, \mathbb{Z})$-equivalent to φ.

Burau representation and q-rationals

Morier-Genoud, Ovsienko, AV 2023 The q-deformed action of the modular group coincides with projective version of Burau representation with $q=-t$. Indeed, for $t=-q$ the matrices R_{q} and L_{q} coincide with

$$
\rho_{3}\left(\sigma_{1}\right)=\left(\begin{array}{cc}
-t & 1 \\
0 & 1
\end{array}\right), \quad \rho_{3}\left(\sigma_{2}\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
t & -t
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
1 & -t^{-1}
\end{array}\right)
$$

Burau representation and q-rationals

Morier-Genoud, Ovsienko, AV 2023 The q-deformed action of the modular group coincides with projective version of Burau representation with $q=-t$. Indeed, for $t=-q$ the matrices R_{q} and L_{q} coincide with

$$
\rho_{3}\left(\sigma_{1}\right)=\left(\begin{array}{cc}
-t & 1 \\
0 & 1
\end{array}\right), \quad \rho_{3}\left(\sigma_{2}\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
t & -t
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
1 & -t^{-1}
\end{array}\right)
$$

This means that if

$$
\rho_{3}(\beta)=\left(\begin{array}{ll}
\mathcal{R}(t) & \mathcal{V}(t) \\
\mathcal{S}(t) & \mathcal{U}(t)
\end{array}\right)
$$

then $\frac{\mathcal{R}(q)}{\mathcal{S}(q)}$ and $\frac{\mathcal{V}(q)}{\mathcal{U}(q)}$ with $q=-t$ are q-rationals.

Burau representation and q-rationals

Morier-Genoud, Ovsienko, AV 2023 The q-deformed action of the modular group coincides with projective version of Burau representation with $q=-t$.

Indeed, for $t=-q$ the matrices R_{q} and L_{q} coincide with

$$
\rho_{3}\left(\sigma_{1}\right)=\left(\begin{array}{cc}
-t & 1 \\
0 & 1
\end{array}\right), \quad \rho_{3}\left(\sigma_{2}\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
t & -t
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
1 & -t^{-1}
\end{array}\right)
$$

This means that if

$$
\rho_{3}(\beta)=\left(\begin{array}{ll}
\mathcal{R}(t) & \mathcal{V}(t) \\
\mathcal{S}(t) & \mathcal{U}(t)
\end{array}\right)
$$

then $\frac{\mathcal{R}(q)}{\mathcal{S}(q)}$ and $\frac{\mathcal{V}(q)}{\mathcal{U}(q)}$ with $q=-t$ are q-rationals.
For instance, taking $\beta=\sigma_{1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}^{-1}$, we have the matrix
$t^{-2}\left(\begin{array}{cc}-t+t^{2}-2 t^{3}+t^{4} & 1-t+t^{2} \\ -t+t^{2}-t^{3} & 1-t\end{array}\right)=q^{-2}\left(\begin{array}{cc}q+q^{2}+2 q^{3}+q^{4} & 1+q+q^{2} \\ q+q^{2}+q^{3} & 1+q\end{array}\right)$,
so that $\frac{1+q+2 q^{2}+q^{3}}{1+q+q^{2}}$ and $\frac{1+q+q^{2}}{1+q}$ are q-deformed $\frac{5}{3}$ and $\frac{3}{2}$, respectively.

Burau specialisation problem and singular set of q-rationals

Define the singular set of q-rationals $\Sigma \subset \mathbb{C}^{*}$ as the union of complex poles of all q-rationals and the extended singular set as $\Sigma_{*}:=\Sigma \cup\{1\}$.

Burau specialisation problem and singular set of q-rationals

Define the singular set of q-rationals $\Sigma \subset \mathbb{C}^{*}$ as the union of complex poles of all q-rationals and the extended singular set as $\Sigma_{*}:=\Sigma \cup\{1\}$.

Morier-Genoud, Ovsienko, AV 2023 The Burau representation ρ_{3} specialized at $t_{0} \in \mathbb{C}^{*}$ is faithful if and only if $-t_{0} \notin \Sigma_{*}$.

Burau specialisation problem and singular set of q-rationals

Define the singular set of q-rationals $\Sigma \subset \mathbb{C}^{*}$ as the union of complex poles of all q-rationals and the extended singular set as $\Sigma_{*}:=\Sigma \cup\{1\}$.

Morier-Genoud, Ovsienko, AV 2023 The Burau representation ρ_{3} specialized at $t_{0} \in \mathbb{C}^{*}$ is faithful if and only if $-t_{0} \notin \Sigma_{*}$.

As a corollary we have
The specialized Burau representation ρ_{3}^{t} is faithful for all $t \in \mathbb{C}^{*}$ outside the annulus

$$
3-2 \sqrt{2} \leq|t| \leq 3+2 \sqrt{2}
$$

and, modulo LMGOV conjecture, outside the annulus

$$
\frac{3-\sqrt{5}}{2} \leq|t| \leq \frac{3+\sqrt{5}}{2}
$$

Rational knots

Conway 1969: Rational (2-bridge, Viergeflechte) link $K\left(\frac{r}{s}\right)$ corresponding to $\frac{r}{s}=\left[a_{1}, \ldots, a_{n}\right]$

$$
\begin{aligned}
& C\left(a_{1}, a_{2}, \ldots a_{n}\right)=4 a \\
& \stackrel{a}{1}^{\bullet}-a_{2} \quad a_{3}-a_{4}--\overrightarrow{(-1)^{n}} a_{n} \\
& \square \square=\rightarrow 20 c
\end{aligned}
$$

Figure: Rational link description from Lickorish 1997

Jones polynomial of rational knots

There are different ways to associate a knot/link to a braid $\beta \in \mathcal{B}_{3}$:

Figure: Standard and Conway closures of $\beta=\sigma_{1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}^{-1}$

Jones polynomial of rational knots

There are different ways to associate a $\mathrm{knot} / \mathrm{link}$ to a braid $\beta \in \mathcal{B}_{3}$:

Figure: Standard and Conway closures of $\beta=\sigma_{1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}^{-1}$
Schubert 1956: $K\left(\frac{r}{s}\right)=K\left(\frac{r^{\prime}}{s^{\prime}}\right)$ iff $r^{\prime}=r$ and $s^{\prime} \equiv s^{ \pm 1}(\bmod r)$.

Jones polynomial of rational knots

There are different ways to associate a knot/link to a braid $\beta \in \mathcal{B}_{3}$:

Figure: Standard and Conway closures of $\beta=\sigma_{1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}^{-1}$
Schubert 1956: $K\left(\frac{r}{s}\right)=K\left(\frac{r^{\prime}}{s^{\prime}}\right)$ iff $r^{\prime}=r$ and $s^{\prime} \equiv s^{ \pm 1}(\bmod r)$.
Lee, Schiffler 2019; MGO 2020 For the rational knot $K\left(\frac{r}{s}\right)$ the (normalised) Jones polynomial can be expressed as

$$
J_{\frac{\Gamma}{5}}(q)=q \mathcal{R}(q)+(1-q) \mathcal{S}(q) .
$$

In particular, in our case of figure-eight knot $K\left(\frac{5}{3}\right)$ the Jones polynomial is

$$
J_{\frac{5}{3}}(q)=q^{-2}\left[q\left(1+q+2 q^{2}+q^{3}\right)+(1-q)\left(1+q+q^{2}\right)\right]=q^{-2}+q^{-1}+1+q+q^{2} .
$$

Concluding remarks

One of the most important questions is to understand the number-theoretic properties of the algebraic integers from the set Σ.

The following results due to Morier-Genoud and Ovsienko provide some constraints on this set.

Concluding remarks

One of the most important questions is to understand the number-theoretic properties of the algebraic integers from the set Σ.

The following results due to Morier-Genoud and Ovsienko provide some constraints on this set.

- Let $\frac{r}{s}=\left[a_{1}, \ldots, a_{2 m}\right]$ and $\left[\frac{r}{s}\right]_{q}=\frac{\mathcal{R}(q)}{\mathcal{S}(q)}$ then the polynomials $\mathcal{R}(q)$ and $\mathcal{S}(q)$ are monic of degrees $a_{1}+\cdots+a_{2 m}-1$ and $a_{2}+\cdots+a_{2 m}-1$ respectively.

Concluding remarks

One of the most important questions is to understand the number-theoretic properties of the algebraic integers from the set Σ.

The following results due to Morier-Genoud and Ovsienko provide some constraints on this set.

- Let $\frac{r}{s}=\left[a_{1}, \ldots, a_{2 m}\right]$ and $\left[\frac{r}{s}\right]_{q}=\frac{\mathcal{R}(q)}{\mathcal{S}(q)}$ then the polynomials $\mathcal{R}(q)$ and $\mathcal{S}(q)$ are monic of degrees $a_{1}+\cdots+a_{2 m}-1$ and $a_{2}+\cdots+a_{2 m}-1$ respectively.
- $\mathcal{R}(0)=\mathcal{S}(0)=1, \quad \mathcal{R}(1)=r, \mathcal{S}(1)=s, \quad \mathcal{R}(-1), \mathcal{S}(-1) \in\{0, \pm 1\}$.

Concluding remarks

One of the most important questions is to understand the number-theoretic properties of the algebraic integers from the set Σ.

The following results due to Morier-Genoud and Ovsienko provide some constraints on this set.

- Let $\frac{r}{s}=\left[a_{1}, \ldots, a_{2 m}\right]$ and $\left[\frac{r}{s}\right]_{q}=\frac{\mathcal{R}(q)}{\mathcal{S}(q)}$ then the polynomials $\mathcal{R}(q)$ and $\mathcal{S}(q)$ are monic of degrees $a_{1}+\cdots+a_{2 m}-1$ and $a_{2}+\cdots+a_{2 m}-1$ respectively.
- $\mathcal{R}(0)=\mathcal{S}(0)=1, \quad \mathcal{R}(1)=r, \mathcal{S}(1)=s, \quad \mathcal{R}(-1), \mathcal{S}(-1) \in\{0, \pm 1\}$.
- The sequences of coefficients in the polynomials $\mathcal{R}(q)$ and $\mathcal{S}(q)$ are unimodal. (Conjectured in MGO 2020 and proved by Oguz and Ravichandran, 2023)

Concluding remarks

One of the most important questions is to understand the number-theoretic properties of the algebraic integers from the set Σ.

The following results due to Morier-Genoud and Ovsienko provide some constraints on this set.

- Let $\frac{r}{s}=\left[a_{1}, \ldots, a_{2 m}\right]$ and $\left[\frac{r}{s}\right]_{q}=\frac{\mathcal{R}(q)}{\mathcal{S}(q)}$ then the polynomials $\mathcal{R}(q)$ and $\mathcal{S}(q)$ are monic of degrees $a_{1}+\cdots+a_{2 m}-1$ and $a_{2}+\cdots+a_{2 m}-1$ respectively.
- $\mathcal{R}(0)=\mathcal{S}(0)=1, \quad \mathcal{R}(1)=r, \mathcal{S}(1)=s, \quad \mathcal{R}(-1), \mathcal{S}(-1) \in\{0, \pm 1\}$.
- The sequences of coefficients in the polynomials $\mathcal{R}(q)$ and $\mathcal{S}(q)$ are unimodal. (Conjectured in MGO 2020 and proved by Oguz and Ravichandran, 2023)
As a corollary we have the result of Scherich 2020 that specialization of the Burau representation at any real negative $t \neq-1$ is faithful. Moreover, the same is true for any $t=-\alpha$, where $\alpha \neq 1$ is an algebraic integer having a real positive conjugate.

Concluding remarks

One of the most important questions is to understand the number-theoretic properties of the algebraic integers from the set Σ.

The following results due to Morier-Genoud and Ovsienko provide some constraints on this set.

- Let $\frac{r}{s}=\left[a_{1}, \ldots, a_{2 m}\right]$ and $\left[\frac{r}{s}\right]_{q}=\frac{\mathcal{R}(q)}{\mathcal{S}(q)}$ then the polynomials $\mathcal{R}(q)$ and $\mathcal{S}(q)$ are monic of degrees $a_{1}+\cdots+a_{2 m}-1$ and $a_{2}+\cdots+a_{2 m}-1$ respectively.
- $\mathcal{R}(0)=\mathcal{S}(0)=1, \quad \mathcal{R}(1)=r, \mathcal{S}(1)=s, \quad \mathcal{R}(-1), \mathcal{S}(-1) \in\{0, \pm 1\}$.
- The sequences of coefficients in the polynomials $\mathcal{R}(q)$ and $\mathcal{S}(q)$ are unimodal. (Conjectured in MGO 2020 and proved by Oguz and Ravichandran, 2023) As a corollary we have the result of Scherich 2020 that specialization of the Burau representation at any real negative $t \neq-1$ is faithful. Moreover, the same is true for any $t=-\alpha$, where $\alpha \neq 1$ is an algebraic integer having a real positive conjugate.
Finally, there is an intruguing "left" q-deformation (MGO; Bapat et al 2023)

$$
\left[\frac{r}{s}\right]_{q}^{b}=\frac{\mathcal{R}^{b}(q)}{\mathcal{S}^{b}(q)}
$$

which, in particular, gives

$$
[n]_{q}^{b}=1+q+\cdots+q^{n-2}+q^{n} .
$$

