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Artin’s braid groups

Emil Artin, 1925: n-strand braid group Bn is generated by n − 1 elements
σ1, . . . , σn−1 with braid relations

σiσi+1σi = σi+1σiσi+1, i = 1, . . . , n − 1,

and σiσj = σjσi when |i − j | > 1.
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Figure: Braid relations and centre of B3
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Braid group B3 and modular group

The modular group PSL(2,Z) = SL(2,Z)/± I is generated by matrices

U =

(
1 1
0 1

)
, S =

(
0 1
−1 0

)
, or, by S and P =

(
0 1
−1 1

)
,

satisfying relations S2 = P3 = −I :

PSL(2,Z) =< P, S |P3 = S2 = e > .

Important fact: PSL(2,Z) = B3/Z, where Z is the centre of B3.

Indeed, let x = σ1σ2, y = σ2σ1σ2, then modulo braid relation

y 2 = σ2σ1σ2σ2σ1σ2 = σ1σ2σ1σ2σ1σ2 = x3,

so B3 =< x , y |x3 = y 2 > . The homomorphism

χ : B3 → PSL(2,Z), χ(x) = P, χ(y) = S

is surjective with the Kerχ = Z(B3) ∼= Z generated by x3 = y 2.

Thus χ is a nice representation of B3 but it is not faithful...
Is there faithful one?
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Burau representation of braid groups

Werner Burau, 1936: Burau representation ρn : Bn → GL(n − 1,Z[t, t−1]).

For n = 3 the Burau representation ρ3 : B3 → GL(2,Z[t, t−1]) is defined by

ρ3 : σ1 7→

(
−t 1

0 1

)
, σ2 7→

(
1 0

t −t

)
,

where t is a formal parameter. When t = 1 we have canonical homomorphism
B3 → S3, while t = −1 corresponds to the representation χ.

Burau used this representation to introduce the invariant of the link
L = L(β), β ∈ Bn by the formula

∆L(t) =
1− t

1− tn
det(I − ρn(β)),

which (up to a unit in Z[t, t−1]) turned out to be related to the Alexander
polynomial (Alexander, 1928).
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Faithfulness of Burau representation

Arnold, 1968; Magnus, Peluso, 1969: Burau representation of B3 is faithful.

However, we have seen that the specialisations with t = ±1 are not.

Burau specialisation problem (Bharathram and Birman):

At which complex specializations of t ∈ C∗ = C \ {0} is the Burau
representation ρ3 faithful?

Scherich 2020: For t ∈ R the specialized Burau representation ρt3 is faithful

when t < 0, t ̸= −1, and outside the interval 3−
√

5
2

≤ t ≤ 3+
√

5
2

.

Morier-Genoud, Ovsienko and AV 2023: The specialized Burau
representation ρt3 is faithful for all t ∈ C∗ outside the annulus

3− 2
√
2 ≤ |t0| ≤ 3 + 2

√
2.

Conjecture (MGOV): The specialized Burau representation ρt3 is faithful for
all t ∈ C∗ outside the annulus

3−
√
5

2
≤ |t| ≤ 3 +

√
5

2
.
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q-deformed modular group PSL(2,Z)q and q-rationals

Morier-Genoud, Ovsienko 2020: q-deformed modular group PSL(2,Z)q is a
subgroup of PGL(2,Z[q, q−1]) generated by

Rq :=

(
q 1

0 1

)
, Lq :=

(
1 0

1 q−1

)
.

When q = 1 we get the standard generators of SL(2,Z), so we can define
q-analogues Mq for every M ∈ SL(2,Z).

There is a natural linear-fractional action of PSL(2,Z)q on the space Z(q) of
rational functions in q with integer coefficients.

The q-rationals are the functions from Z(q) in the orbit of any point from the
set {0, 1, ∞} for this action.

This agrees with the notion of q-integers due to Euler and Gauss:

[n]q := 1 + q + q2 + . . .+ qn−1

[−n]q := −q−1 − q−2 . . .− q−n.
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q-deformed continued fractions

Let r
s
= [a1, . . . , a2m] be the continued fraction expansion and consider the

corresponding matrix decompositions

M(a1, . . . , a2m) :=

(
r v
s u

)
= Ra1La2 · · ·Ra2m−1La2m ,

Mq(a1, . . . , a2m) :=

(
R(q) V(q)
S(q) U(q)

)
= Ra1

q La2
q · · ·Ra2m−1

q La2m
q .

The q-analogue of a rational r
s
is given by[ r
s

]
q
:=

R(q)

S(q) .

For example, for 2 = 1 + 1
1
= [1, 1] we have

M(1, 1) = RL =

(
2 1

1 1

)
, Mq(1, 1) = RqLq =

(
1 + q q−1

1 q−1

)
,

so [2]q = 1 + q in agreement with Euler and Gauss.
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Properties of polynomials R(q) and S(q)

Suppose that r
s
≥ 1.

Morier-Genoud, Ovsienko 2020: The polynomials R and S have positive
integer coefficients and satisfy the following “reflection and mirror” properties:[ s

r

]
q
=

S(q−1)

R(q−1)
,

[
− r

s

]
q
= − R(q−1)

qS(q−1)
.

Leclere, Morier-Genoud, Ovsienko, AV 2021 For every rational r
s
the roots of

the polynomials R and S belong to the open annulus

3− 2
√
2 < |q| < 3 + 2

√
2.

Conjecture (LMGOV) For every rational r
s
the roots of the polynomials R and

S belong to the open annulus

3−
√
5

2
< |q| < 3 +

√
5

2
.
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Example (MGO 2020): Fibonacci polynomials

Let Fn be the nth Fibonacci number,
Fn+1

Fn
are the convergents for φ = 1+

√
5

2
,[

Fn+1

Fn

]
q

=:
F̃n+1(q)

Fn(q)

be their q-deformed versions. The polynomials Fn(q) and F̃n(q) are of
degree n − 2 (for n ≥ 2) and are mirror of each other:

F̃n(q) = qn−2Fn(q
−1).

The Fibonacci polynomials Fn(q) are determined by the recurrence

Fn+2(q) = [3]q Fn(q)− q2Fn−2(q), [3]q = 1 + q + q2

with F0(q) = 1, F2(q) = 1 + q; F1(q) = 1, F3(q) = 1 + q + q2 :[
8
5

]
q

=
1 + 2q + 2q2 + 2q3 + q4

1 + 2q + q2 + q3
,

[
13
8

]
q

=
1 + 2q + 3q2 + 3q3 + 3q4 + q5

1 + 2q + 2q2 + 2q3 + q4
,

[
21
13

]
q

=
1 + 3q + 4q2 + 5q3 + 4q4 + 3q5 + q6

1 + 3q + 3q2 + 3q3 + 2q4 + q5
.
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q-deformed irrationals

Suppose that a sequence of rationals rm
sm

converges to an irrational number x .

Morier-Genoud, Ovsienko 2020: The coefficients of the Taylor series of
rational functions Rm(q)

Sm(q)
stabilize as m grows.

This allows to define a q-deformation [x ]q as Taylor series with integer

coefficients. In particular, for the golden ratio φ = 1+
√

5
2

we have

[φ]q =
q2 + q − 1 +

√
(q2 + 3q + 1)(q2 − q + 1)

2q

with the radius of convergence R = 3−
√
5

2
.

Conjecture [LMGOV 2021] For every real x > 0 the radius of convergence
R(x) of the series [x ]q satisfies the inequality

R(x) ≥ R(φ) =
3−

√
5

2

and the equality holding only for x which are PSL(2,Z)-equivalent to φ.
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Burau representation and q-rationals

Morier-Genoud, Ovsienko, AV 2023 The q-deformed action of the modular
group coincides with projective version of Burau representation with q = −t.

Indeed, for t = −q the matrices Rq and Lq coincide with

ρ3(σ1) =

(
−t 1

0 1

)
, ρ3(σ2)

−1 =

(
1 0

t −t

)−1

=

(
1 0

1 −t−1

)
.

This means that if

ρ3(β) =

(R(t) V(t)
S(t) U(t)

)
,

then R(q)
S(q)

and V(q)
U(q)

with q = −t are q-rationals.

For instance, taking β = σ1σ
−1
2 σ1σ

−1
2 , we have the matrix

t−2

(
−t + t2 − 2t3 + t4 1− t + t2

−t + t2 − t3 1− t

)
= q−2

(
q + q2 + 2q3 + q4 1 + q + q2

q + q2 + q3 1 + q

)
,

so that 1+q+2q2+q3

1+q+q2
and 1+q+q2

1+q
are q-deformed 5

3
and 3

2
, respectively.
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Morier-Genoud, Ovsienko, AV 2023 The q-deformed action of the modular
group coincides with projective version of Burau representation with q = −t.

Indeed, for t = −q the matrices Rq and Lq coincide with

ρ3(σ1) =

(
−t 1

0 1

)
, ρ3(σ2)

−1 =

(
1 0

t −t

)−1

=

(
1 0

1 −t−1

)
.

This means that if

ρ3(β) =

(R(t) V(t)
S(t) U(t)

)
,

then R(q)
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Burau specialisation problem and singular set of q-rationals

Define the singular set of q-rationals Σ ⊂ C∗ as the union of complex poles of
all q-rationals and the extended singular set as Σ∗ := Σ ∪ {1}.

Morier-Genoud, Ovsienko, AV 2023 The Burau representation ρ3 specialized
at t0 ∈ C∗ is faithful if and only if −t0 /∈ Σ∗.

As a corollary we have

The specialized Burau representation ρt3 is faithful for all t ∈ C∗ outside the
annulus

3− 2
√
2 ≤ |t| ≤ 3 + 2

√
2

and, modulo LMGOV conjecture, outside the annulus

3−
√
5

2
≤ |t| ≤ 3 +

√
5

2
.
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Rational knots

Conway 1969: Rational (2-bridge, Viergeflechte) link K( r
s
) corresponding to

r
s
= [a1, . . . , an] A Beginning for Knot Theory 9 

C E ú I í ä ò I =... an) = ú =

. . . . -- ...... 
at -a2 a3 -a.. (-l)nan 

Figure 1.8 

a (p, q) rational knot, I p I is an invariant of the knot---namely, its determinant (see 
Chapter 9). An important property of a rational link is that it can be formed by 
gluing together two trivial 2-string tangles. Such a tangle is a 3-ball containing 
two standard (unknotted, unlinked) disjoint spanning arcs. Each arc meets the 
boundary of its ball at just its end points. The gluing process identifies together 
the boundaries of the balls to obtain S3, and to produce the link, it identifies the 
four ends of the arcs in one ball with the ends of those in the other. This can be 
seen by considering a vertical line through one of the diagrams in Figure 1.8. The 
line meets the link in four points. The diagram to one side of the line represents 
two arcs in a ball and, forgetting the configuration on the other side of the line, the 
arcs untwist. 

The remainder of Figure 1.8 shows how C(a!, a2, ... , an) can be regarded as 
the boundary of n twisted bands "plumbed" together. If the ai in the expression 
for q / p as a repeated fraction are all even, then the union of these bands is an 
orientable surface. The recipe for this plumbing can be encoded in a simple linear 
graph, as shown, in which each vertex represents a twisted band and each edge a 
plumbing. The boundary of a collection of bands plumbed according to the recipe 
of a tree (a connected graph with no closed loop) is called an arborescent link. 
(Conway called such a link "algebraic".) If the tree has only one vertex incident 
to more than two edges, the resulting link is a "Montesinos link"; the pretzel links 
are simple examples. Arborescent links have been classified by Bonahon and L. C. 
Siebenmann [15]. 

The ideas of braids and the braid group give a useful way of describing knots 
and links. A braid of n strings is n oriented arcs traversing a box steadily from 
the left to the right. The box will be depicted as a square or rectangle, and the 
arcs will join n standardfixed points on the left edge to n such points on the right 
edge. Over-passes are indicated in the usual way. The arcs are required to meet 
each vertical line that meets the rectangle in precisely n points (the arcs can never 
tum back in their progress from left to right). Two braids are the same if they 
are ambient isotopic (that is, the strings can be "moved" from one position to the 

Figure: Rational link description from Lickorish 1997



Jones polynomial of rational knots

There are different ways to associate a knot/link to a braid β ∈ B3:

Figure: Standard and Conway closures of β = σ1σ
−1
2 σ1σ

−1
2

Schubert 1956: K( r
s
) = K( r

′

s′ ) iff r ′ = r and s ′ ≡ s±1 (mod r).

Lee, Schiffler 2019; MGO 2020 For the rational knot K( r
s
) the (normalised)

Jones polynomial can be expressed as

J r
s
(q) = qR(q) + (1− q)S(q).

In particular, in our case of figure-eight knot K( 5
3
) the Jones polynomial is

J 5
3
(q) = q−2[q(1+q+2q2+q3)+(1−q)(1+q+q2)] = q−2+q−1+1+q+q2.
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Concluding remarks

One of the most important questions is to understand the number-theoretic
properties of the algebraic integers from the set Σ.

The following results due to Morier-Genoud and Ovsienko provide some
constraints on this set.

• Let r
s
= [a1, . . . , a2m] and

[
r
s

]
q
= R(q)

S(q)
then the polynomials R(q) and S(q)

are monic of degrees a1 + · · ·+ a2m − 1 and a2 + · · ·+ a2m − 1 respectively.

• R(0) = S(0) = 1, R(1) = r ,S(1) = s, R(−1),S(−1) ∈ {0,±1}.
• The sequences of coefficients in the polynomials R(q) and S(q) are unimodal.
(Conjectured in MGO 2020 and proved by Oguz and Ravichandran, 2023)

As a corollary we have the result of Scherich 2020 that specialization of the
Burau representation at any real negative t ̸= −1 is faithful. Moreover, the
same is true for any t = −α, where α ̸= 1 is an algebraic integer having a real
positive conjugate.

Finally, there is an intruguing “left” q-deformation (MGO; Bapat et al 2023)[ r
s

]♭
q
=

R♭(q)

S♭(q)
,

which, in particular, gives

[n]♭q = 1 + q + · · ·+ qn−2 + qn.
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