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P CS" E" or H" is a Coxeter polytope
if all its dihedral angles are submultiples of .

Fundamental domains

Coxeter polytopes = - :
polytop of discrete reflection groups

Example: Euclidean Coxeter triangles.
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e P C S". Finitely many in each dimension,
Classified (Coxeter, 1934).

e P C E". Finitely many in each dimension,
Classified (Coxeter, 1934).

e P C H". Infinitely many, No classification.
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Coxeter diagrams
e Nodes «—— facets f; of P

e Edges: Examples:

® o if £ foJ :7'('/2
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Gram matrix

P CSY“E"orH" — Symmetric matrix G = {g;;}

/

—cas(WZj), if Z(fif;) = m/myj,
® gii = 1, 9i5 = § —1, if f; is parallel to f;,
—ch(p(fi, f5)), if fi and f; deverge.
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Gram matrix

P CS",E"or H* — Symmetric matrix G = {g;;}

/

® gii =1, gij = < —1, if f; is parallel to f;,
—ch (fis f3)), if fi and f; deverge.
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Gram matrix

P CSY“E"orH" — Symmetric matrix G = {g;;}

/

—cas(WZj), if Z(fif;) = m/myj,
® gii = 1, 9i5 = § —1, if f; is parallel to f;,
—ch(p(fi, f5)), if fi and f; deverge.

Sd' ]Ed Hd

sgn(G) | (d+1,0) | (d,0) | (d,1)
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Euclidean Coxeter polytopes

e P CE"™= P is a product of simplices.

e Coxeter diagram of P is called parabolic, it is a union of



Euclidean Coxeter polytopes
e PCE"™ = P is a product of simplices.

e Coxeter diagram of P is called parabolic, it is a union of
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Hyperbolic Coxeter polytopes

e Wide veriety of compact and finite-volume polytopes.

— Any number of facets
— Any complexity of combinatorial types
— Arbitrary small dihedral angles

e Thm. (Allcock’ 05) There are infinitely many finite-volume
Cozeter polytopes in H?, for every d < 19.

There are infinitely many compact Coxeter polytopes in HC,
for every d < 6.
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If P is compact then P is simple.
Coxeter diagram — combinatorics of P. (Vinberg).

— k-Faces <« elliptic subdiagrams of order d — k
( elliptic = Coxeter diagrams of spherical simplices).

— ideal vertices «» parabolic subdiagrams of order d
( parabolic = Coxeter diagrams of Euclidean simplices).

— Finite volume < P comb. equiv. to a Euclidean polytope

(Vinberg'85) Indecomposible, symm. matrix G, sgn(G) = (d, 1)
= J! PcH? G = G(P).
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Examples known for d < 8.
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o If P C HYis compact then d <29. (Vinberg '84).

Examples known for d < 8.
Unique Ex. for d = 8 (Bugaenko'92):

e If P C H?is of finite volume then d < 996.
(Prochorov, Khovanskiy '84).

Examples known for d < 19 (Vinberg, Kaplinskaya'78)
d = 21 (Borcherds'87).
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Compact hyperbolic Coxeter polytopes
1. By dimension.
e dim = 2. Poincare (1882): > «a; < w(n —2).

e dim = 3. Andreev ('70): necessary and suff. condition
for dihedral angles.

o dim >4. 17777
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e n=d+ 1, simplices (Lanner'82), Lanner diagrams
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e n=d+ 1, simplices (Lanner'82): d < 4, fin. many for d > 2.

o n=d+2, AFx Al
— prisms (Kaplinskaya'74): d <5, fin. many for d > 3.
— others (Esselmann’96): d =4, A% x A?, 7 items.

e n =d+ 3, many combinatorial types
(Tumarkin'03): d <6 or d =8, fin. many for d > 3.

e n =d+ 4, really many combinatorial types...
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e Given a combinatorial type, may try to “reconstruct”
the polytope (i.e. to find its dihedral angles).

Combinatorics: Dihedral angles:
Diagram of missing faces Coxeter diagram



Diagram of missing faces
e Nodes «+—— facets of P

e Missing face is a minimal set of facets fi, ..., f,
such that (), f; = 0.

e Missing faces are encircled.

o Ex:
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Tools

e Given a combinatorial type, may try to “reconstruct” the polytope
(i.e. to find its dihedral angles).

Combinatorics: Dihedral angles:
Diagram of missing faces Coxeter diagram
Missing faces — Lanner subdiagrams

(minimal non-eliptic subd.)

Example:



Lanner subdiagrams «—— Missing faces
e If L is a Lanner diagram then |L| < 5.
e # of Lanner diagrams of order 4,5 is finite.

e For any two Lanner subdiagrams s.t. L; N Ly =0,
3 an edge joining these subdiagrams.

Given a combinatorial type may try to check

If there is a Coxeter polytope of this type.



2. By number of facets.
e n=d+ 1, simplices (Lanner'82): d < 4, fin. many for d > 2.

o n=d+2, AFx Al
— prisms (Kaplinskaya'74): d <5, fin. many for d > 3.
— others (Esselmann’96): d =4, A% x A?, 7 items.

e n =d+ 3, many combinatorial types
(Tumarkin'03): d <6 or d =8, fin. many for d > 3.

e n =d+ 4, really many combinatorial types...
(T,F'05): d <9.



Tools

e Combinatorial type — “reconstruction” of Coxeter polytope

e Coxeter faces.

Elliptic subdiagram

. —  Coxeter face
without A,, and Ds

— Borcherds'98:



Tools

e Combinatorial type — “reconstruction” of Coxeter polytope

e Coxeter faces.

Elliptic subdiagram

. —  Coxeter face
without A,, and Ds

— Borcherds'98:

— Allcock’05: Angles of this face are easy to find.



2. By number of facets.
e n=d+ 1, simplices (Lanner'82): d < 4, fin. many for d > 2.

o n=d+2, AFx Al
— prisms (Kaplinskaya'74): d < 5, fin. many for d > 3.
— others (Esselmann’96): d = 4, A% x A% 7 items.

e n =d+ 3, many combinatorial types
(Tumarkin'03): d < 6 or d = 8, fin.many for d > 3.

e n =d+ 4, really many combinatorial types...
(T,F'06): d <7, unique example in d = 7.

e n=d+5, (T,F06): d <8.
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n — dim

1) proofs are similar
2) use previous cases




dim

n — dim

1) proofs are similar
2) use previous cases

Inductive algorithm?
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3. By number of dotted edges.

e p=20, (T,F'06): Simplices and Esselmann’s polytopes only.
d<4, n<d-+2.

e p=1, (T,F'07): Only polytopes with n < d + 3.
d <6 and d=28.

e p<n-—d-—2,(T,F07): finitly many polytopes. Algorithm.

e (T,F'06): If all Lanner subdiagrams are of order 2, then d < 13.
(for compact or simple finite volume polytops).



Essential polytopes
A Coxeter polytope P is essential iff
e P generates a maximal reflection group;

e P is not glued of two smaller Coxeter polytopes.

Question: Is the number of essential polytopes finite?

Is there any in dim > 87



Problem: How to determine if two combinatorial
polytopes are of the same combinatorial types?

e Polytopes where presented by lists of vertices

triangular 3-prism 1,34 23,4
Example: with bases1and 2 «—— 1,3,5 2,3,5
and sides 3,4,5 1,45 2,45

Same presentaion

e Same combinatorial type «—— .
up to permutation



Problem: How to determine if two combinatorial
polytopes are of the same combinatorial types?

e Polytopes where presented by lists of vertices

triangular 3-prism 1,34 23,4
Example: with bases1and 2 «—— 1,3,5 2,3,5
and sides 3,4,5 1,45 2,45

Same presentaion

e Same combinatorial type «—— .
up to permutation

ldea: compare the numbers of missing faces of each size.



(to,t3,t4,...,tn), t; = F(missing faces of order 7).

Simple Dual simplicial Complex 7 of
—

polytope complex X missing faces of X

Missing face is a minimal set of vertices
defining no simplex in the complex.

e Complex of missing faces for any simplicial complex:

D — 2] —> g —> g — ...

(tg,t%,ti, L), tg = #(missing faces of order 7 in X;).



Example: triangular prism.

» ) )P Yq >y > 26 27

1,3,4 1,2 1,3 1,2 1,3 1,2 34,5 1,3,4

1,3,5 34,5 1,4 3,4 1,4 1,3,4 1,2,3 1,3,5

1,4,5 1,5 3,5 1,5 1,3,5 1,2,4 1,4,5

2,3,4 2,3 4.5 2,3 1,4,5 1,2,5 2,3,4

2,3,5 2,4 2,4 2,3,4 2,3,5

2,45 2,5 2,5 2,3,5 2,45
34,5 2,45

Ko




(t: b3, 11, - - s 1)
(85, 85,15, - -, 1)

Conjecture: Do these numbers determine a polytope?



Example:




Example:

K—666517

k=158381



Question: Do these numbers determine
a simplicial complex?



Question: Do these numbers determine
a simplicial complex?

No: They do not differ
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Def: >.* is Alexander dual to X if
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Def: >.* is Alexander dual to X if

Aed¥ & X\A ¢ 3.

ZO — 21 — 22 — 23 —

l [ [ [
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