A. Felikson

Independent University of Moscow, IHES

(joint with P. Tumarkin)

March 6, Lille 1.

 $P \subset \mathbb{S}^n$, \mathbb{E}^n or \mathbb{H}^n is a Coxeter polytope if all its dihedral angles are submultiples of π .

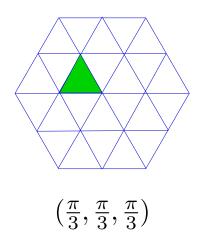
 $P \subset \mathbb{S}^n$, \mathbb{E}^n or \mathbb{H}^n is a Coxeter polytope if all its dihedral angles are submultiples of π .

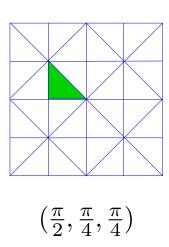
Coxeter polytopes = Fundamental domains of discrete reflection groups

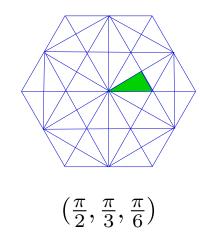
 $P \subset \mathbb{S}^n$, \mathbb{E}^n or \mathbb{H}^n is a Coxeter polytope if all its dihedral angles are submultiples of π .

Coxeter polytopes = Fundamental domains of discrete reflection groups

Example: Euclidean Coxeter triangles.







- $P \subset \mathbb{S}^n$. Finitely many in each dimension, Classified (Coxeter, 1934).
- $P \subset \mathbb{E}^n$. Finitely many in each dimension, Classified (Coxeter, 1934).
- $P \subset \mathbb{H}^n$. Infinitely many, No classification.

Coxeter diagrams

- Nodes \longleftrightarrow facets f_i of P
- Edges:

• if
$$\angle(f_if_j) = \pi/2$$

•
$$m_{ij}$$
• if $\angle(f_if_j) = \pi/m_{ij}$

• if
$$\angle(f_i f_j) = \pi/3$$

• if
$$\angle(f_i f_i) = \pi/4$$

• if
$$\angle(f_if_j) = \pi/5$$

• --- • if
$$f_i \cap f_j = \emptyset$$

6

Coxeter diagrams

• Nodes \longleftrightarrow facets f_i of P

• Edges:

• if
$$\angle(f_if_j) = \pi/2$$

•
$$m_{ij}$$
• if $\angle(f_if_j) = \pi/m_{ij}$

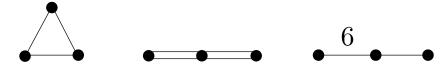
• if
$$\angle(f_i f_j) = \pi/3$$

• if
$$\angle(f_i f_j) = \pi/4$$

• if
$$\angle(f_i f_j) = \pi/5$$

• --- • if
$$f_i \cap f_j = \emptyset$$

Examples:

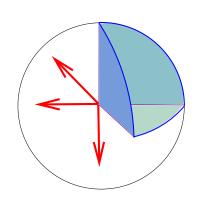


$$P \subset \mathbb{S}^n, \mathbb{E}^n \text{ or } \mathbb{H}^n \longrightarrow \mathsf{Symmetric matrix } G = \{g_{ij}\}$$

$$\bullet \ g_{ii}=1, \qquad g_{ij}= \begin{cases} -cos(\frac{\pi}{m_{ij}}), & \text{if } \angle(f_if_j)=\pi/m_{ij}, \\ -1, & \text{if } f_i \text{ is parallel to } f_j, \\ -ch(\rho(f_i,f_j)), & \text{if } f_i \text{ and } f_j \text{ deverge.} \end{cases}$$

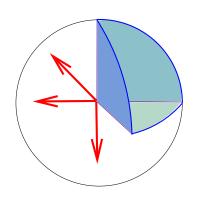
$$P \subset \mathbb{S}^n, \mathbb{E}^n \text{ or } \mathbb{H}^n \longrightarrow \mathsf{Symmetric matrix } G = \{g_{ij}\}$$

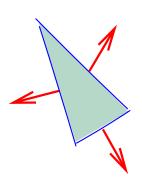
$$\bullet \ g_{ii} = 1, \qquad g_{ij} = \begin{cases} -cos(\frac{\pi}{m_{ij}}), & \text{if } \angle(f_if_j) = \pi/m_{ij}, \\ -1, & \text{if } f_i \text{ is parallel to } f_j, \\ -ch(\rho(f_i, f_j)), & \text{if } f_i \text{ and } f_j \text{ deverge.} \end{cases}$$

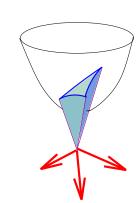


$$P \subset \mathbb{S}^n, \mathbb{E}^n \text{ or } \mathbb{H}^n \longrightarrow \mathsf{Symmetric matrix } G = \{g_{ij}\}$$

$$\bullet \ g_{ii} = 1, \qquad g_{ij} = \begin{cases} -cos(\frac{\pi}{m_{ij}}), & \text{if } \angle(f_if_j) = \pi/m_{ij}, \\ -1, & \text{if } f_i \text{ is parallel to } f_j, \\ -ch(\rho(f_i,f_j)), & \text{if } f_i \text{ and } f_j \text{ deverge.} \end{cases}$$







$$P \subset \mathbb{S}^n, \mathbb{E}^n \text{ or } \mathbb{H}^n \longrightarrow \mathsf{Symmetric matrix } G = \{g_{ij}\}$$

$$\bullet \ g_{ii} = 1, \qquad g_{ij} = \begin{cases} -cos(\frac{\pi}{m_{ij}}), & \text{if } \angle(f_if_j) = \pi/m_{ij}, \\ -1, & \text{if } f_i \text{ is parallel to } f_j, \\ -ch(\rho(f_i,f_j)), & \text{if } f_i \text{ and } f_j \text{ deverge.} \end{cases}$$

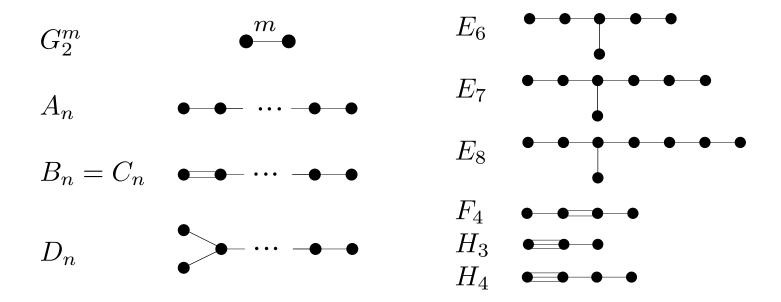
	\mathbb{S}^d	\mathbb{E}^d	\mathbb{H}^d
sgn(G)	(d+1,0)	(d,0)	(d,1)

Spherical Coxeter polytopes

- $P \subset \mathbb{S}^n \Rightarrow P$ is a simplex.
- ullet Coxeter diagram of P is called elliptic, it is a union of

Spherical Coxeter polytopes

- $P \subset \mathbb{S}^n \Rightarrow P$ is a simplex.
- ullet Coxeter diagram of P is called elliptic, it is a union of

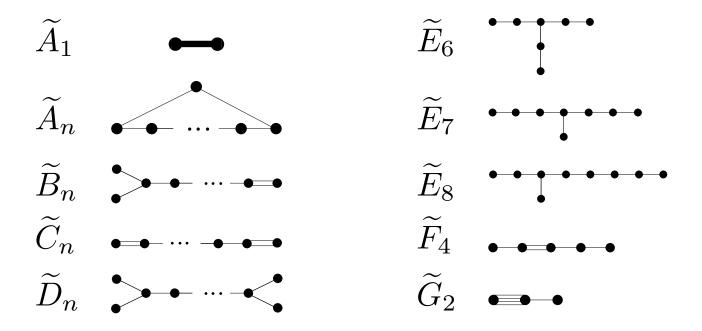


Euclidean Coxeter polytopes

- $P \subset \mathbb{E}^n \Rightarrow P$ is a product of simplices.
- ullet Coxeter diagram of P is called parabolic, it is a union of

Euclidean Coxeter polytopes

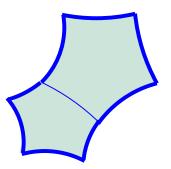
- $P \subset \mathbb{E}^n \Rightarrow P$ is a product of simplices.
- Coxeter diagram of P is called parabolic, it is a union of



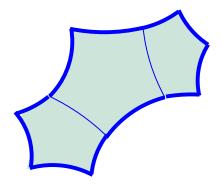
• Wide veriety of compact and finite-volume polytopes.

• Wide veriety of compact and finite-volume polytopes.

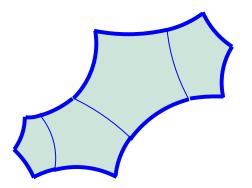
• Wide veriety of compact and finite-volume polytopes.



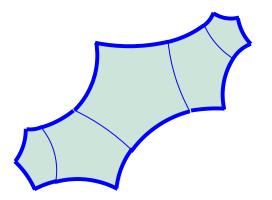
• Wide veriety of compact and finite-volume polytopes.



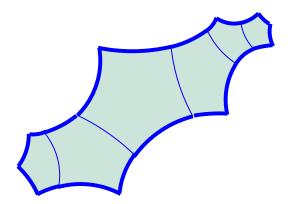
• Wide veriety of compact and finite-volume polytopes.



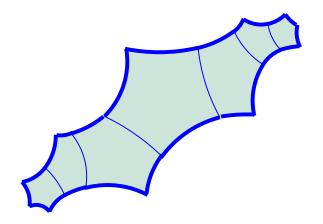
• Wide veriety of compact and finite-volume polytopes.



• Wide veriety of compact and finite-volume polytopes.



• Wide veriety of compact and finite-volume polytopes.

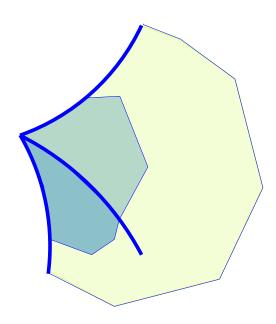


- Wide veriety of compact and finite-volume polytopes.
 - Any number of facets
 - Any complexity of combinatorial types
 - Arbitrary small dihedral angles

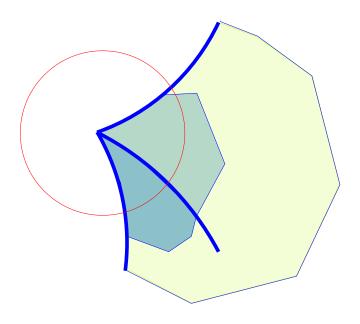
- Wide veriety of compact and finite-volume polytopes.
 - Any number of facets
 - Any complexity of combinatorial types
 - Arbitrary small dihedral angles
- Thm. (Allcock' 05) There are infinitely many finite-volume Coxeter polytopes in \mathbb{H}^d , for every $d \leq 19$.

There are infinitely many compact Coxeter polytopes in \mathbb{H}^d , for every $d \leq 6$.

If P is compact then P is simple.
 (i.e. d facets through each vertex)



If P is compact then P is simple.
 (i.e. d facets through each vertex)



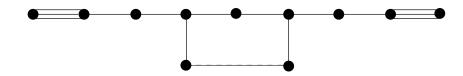
- If P is compact then P is simple.
- Coxeter diagram \rightarrow combinatorics of P. (Vinberg).

- If P is compact then P is simple.
- Coxeter diagram \rightarrow combinatorics of P. (Vinberg).
 - -k-Faces \leftrightarrow elliptic subdiagrams of order d-k (elliptic = Coxeter diagrams of spherical simplices).
 - ideal vertices \leftrightarrow parabolic subdiagrams of order d (parabolic = Coxeter diagrams of Euclidean simplices).
 - Finite volume \leftrightarrow P comb. equiv. to a Euclidean polytope

- If P is compact then P is simple.
- Coxeter diagram \rightarrow combinatorics of P. (Vinberg).
 - -k-Faces \leftrightarrow elliptic subdiagrams of order d-k (elliptic = Coxeter diagrams of spherical simplices).
 - ideal vertices \leftrightarrow parabolic subdiagrams of order d (parabolic = Coxeter diagrams of Euclidean simplices).
 - Finite volume \leftrightarrow P comb. equiv. to a Euclidean polytope
- (Vinberg'85) Indecomposible, symm. matrix G, sgn(G) = (d,1) $\Rightarrow \exists ! \ P \in \mathbb{H}^d$, G = G(P).

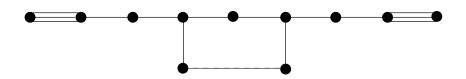
Examples known for $d \leq 8$.

Unique Ex. for d = 8 (Bugaenko'92):



Examples known for $d \leq 8$.

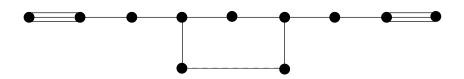
Unique Ex. for d = 8 (Bugaenko'92):



• If $P \subset \mathbb{H}^d$ is of finite volume then $d \leq 996$. (Prochorov, Khovanskiy '84).

Examples known for $d \leq 8$.

Unique Ex. for d = 8 (Bugaenko'92):



• If $P \subset \mathbb{H}^d$ is of finite volume then $d \leq 996$. (Prochorov, Khovanskiy '84).

Examples known for $d \le 19$ (Vinberg, Kaplinskaya'78) d = 21 (Borcherds'87).

Compact hyperbolic Coxeter polytopes

1. By dimension.

Compact hyperbolic Coxeter polytopes

- 1. By dimension.
 - dim = 2. Poincare (1882): $\sum \alpha_i \leq \pi(n-2)$.

Compact hyperbolic Coxeter polytopes

- 1. By dimension.
 - dim = 2. Poincare (1882): $\sum \alpha_i \leq \pi(n-2)$.
 - dim = 3. Andreev ('70): necessary and suff. condition for dihedral angles.

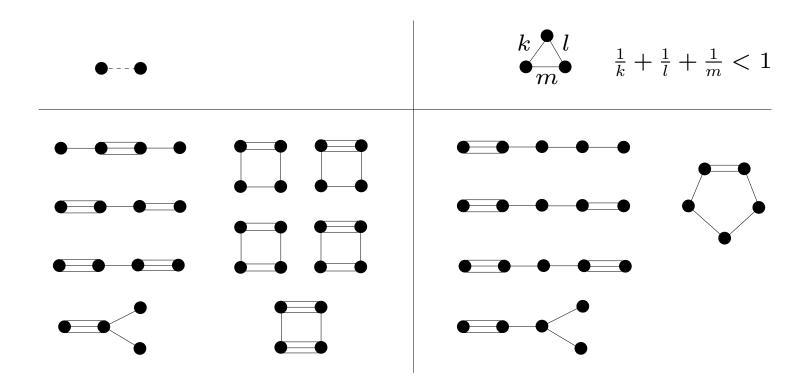
Compact hyperbolic Coxeter polytopes

- 1. By dimension.
 - dim = 2. Poincare (1882): $\sum \alpha_i \leq \pi(n-2)$.
 - dim = 3. Andreev ('70): necessary and suff. condition for dihedral angles.
 - $dim \ge 4$. ??????

2. By number of facets.

- 2. By number of facets.
 - n = d + 1, simplices (Lanner'82)

- 2. By number of facets.
 - n = d + 1, simplices (Lanner'82), Lanner diagrams



- 2. By number of facets.
 - n = d + 1, simplices (Lanner'82): $d \le 4$, fin. many for d > 2.

- 2. By number of facets.
 - n = d + 1, simplices (Lanner'82): $d \le 4$, fin. many for d > 2.
 - n = d + 2, $\Delta^k \times \Delta^l$
 - prisms (Kaplinskaya'74): $d \le 5$, fin. many for d > 3.
 - others (Esselmann'96): d=4, $\Delta^2 \times \Delta^2$, 7 items.

- 2. By number of facets.
 - n = d + 1, simplices (Lanner'82): $d \le 4$, fin. many for d > 2.
 - n=d+2, $\Delta^k \times \Delta^l$ - prisms (Kaplinskaya'74): $d \leq 5$, fin. many for d>3. - others (Esselmann'96): d=4, $\Delta^2 \times \Delta^2$, 7 items.
 - n=d+3, many combinatorial types (Tumarkin'03): $d \leq 6$ or d=8, fin. many for d>3.

- 2. By number of facets.
 - n = d + 1, simplices (Lanner'82): $d \le 4$, fin. many for d > 2.
 - n=d+2, $\Delta^k \times \Delta^l$ - prisms (Kaplinskaya'74): $d \leq 5$, fin. many for d>3. - others (Esselmann'96): d=4, $\Delta^2 \times \Delta^2$, 7 items.
 - n=d+3, many combinatorial types (Tumarkin'03): $d \le 6$ or d=8, fin. many for d>3.
 - n = d + 4, really many combinatorial types...

• Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics:

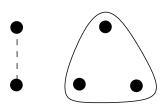
Diagram of missing faces

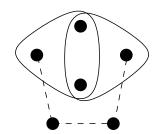
Dihedral angles:

Coxeter diagram

Diagram of missing faces

- Nodes \longleftrightarrow facets of P
- Missing face is a minimal set of facets $f_1, ..., f_k$, such that $\bigcap_{i=1}^k f_i = \emptyset$.
- Missing faces are encircled.
- Ex:





• Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics:

Dihedral angles:

Diagram of missing faces

Coxeter diagram

Missing faces

 \longleftrightarrow

Lanner subdiagrams (minimal non-eliptic subd.)

• Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics:

Dihedral angles:

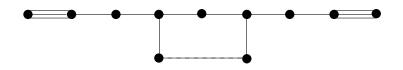
Diagram of missing faces

Coxeter diagram

Missing faces

 \longleftrightarrow

Lanner subdiagrams (minimal non-eliptic subd.)



• Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics:

Dihedral angles:

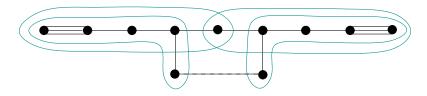
Diagram of missing faces

Coxeter diagram

Missing faces

 \longleftrightarrow

Lanner subdiagrams (minimal non-eliptic subd.)



• Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics:

Dihedral angles:

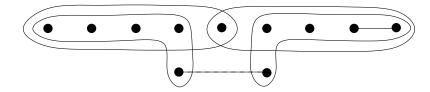
Diagram of missing faces

Coxeter diagram

Missing faces

 \longleftrightarrow

Lanner subdiagrams (minimal non-eliptic subd.)



Lanner subdiagrams ← → Missing faces

- If L is a Lanner diagram then $|L| \leq 5$.
- \bullet # of Lanner diagrams of order 4,5 is finite.
- For any two Lanner subdiagrams s.t. $L_1 \cap L_2 = \emptyset$, \exists an edge joining these subdiagrams.

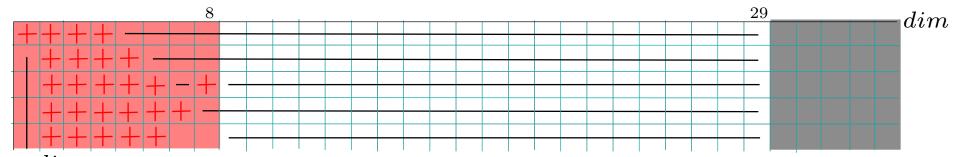
Given a combinatorial type may try to check if there is a Coxeter polytope of this type.

- 2. By number of facets.
 - n = d + 1, simplices (Lanner'82): $d \le 4$, fin. many for d > 2.
 - n=d+2, $\Delta^k \times \Delta^l$ - prisms (Kaplinskaya'74): $d \leq 5$, fin. many for d>3. - others (Esselmann'96): d=4, $\Delta^2 \times \Delta^2$, 7 items.
 - n=d+3, many combinatorial types (Tumarkin'03): $d \le 6$ or d=8, fin. many for d>3.
 - n = d + 4, really many combinatorial types... (T,F'05): $d \le 9$.

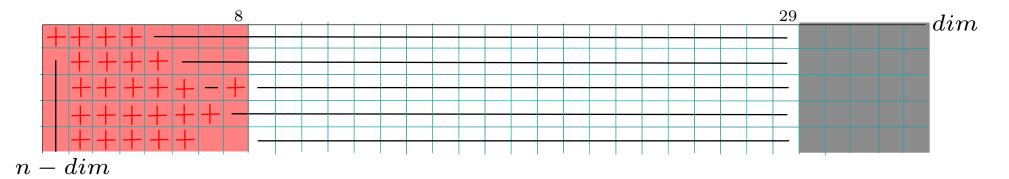
- Combinatorial type → "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds'98: Elliptic subdiagram without A_n and D_5 \rightarrow Coxeter face

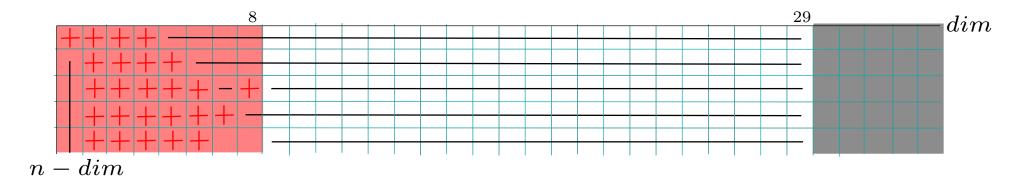
- Combinatorial type → "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds'98: Elliptic subdiagram without A_n and D_5 \rightarrow Coxeter face
 - Allcock'05: Angles of this face are easy to find.

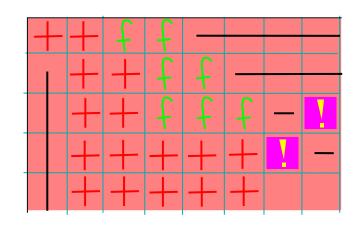
- 2. By number of facets.
 - n = d + 1, simplices (Lanner'82): $d \le 4$, fin. many for d > 2.
 - n = d + 2, $\Delta^k \times \Delta^l$
 - prisms (Kaplinskaya'74): $d \le 5$, fin. many for d > 3.
 - others (Esselmann'96): d=4, $\Delta^2 \times \Delta^2$, 7 items.
 - n=d+3, many combinatorial types (Tumarkin'03): $d \le 6$ or d=8, fin.many for d>3.
 - n = d + 4, really many combinatorial types... (T,F'06): $d \le 7$, unique example in d = 7.
 - n = d + 5, (T,F'06): $d \le 8$.



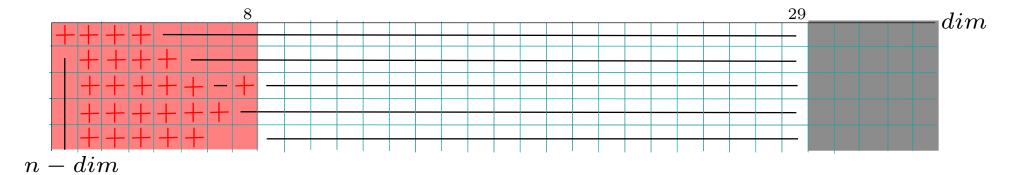
n-dim

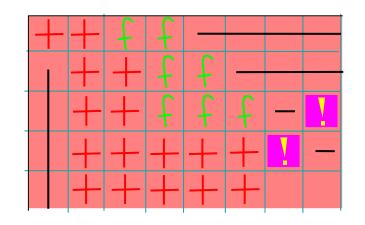






- 1) proofs are similar
- 2) use previous cases





- 1) proofs are similar
- 2) use previous cases

Inductive algorithm?

3. By number of dotted edges.

- 3. By number of dotted edges.
 - p=0, (T,F'06): Simplices and Esselmann's polytopes only. $d \le 4, \ n \le d+2.$

- 3. By number of dotted edges.
 - p=0, (T,F'06): Simplices and Esselmann's polytopes only. $d \leq 4$, $n \leq d+2$.
 - p=1, (T,F'07): Only polytopes with $n \leq d+3$. $d \leq 6$ and d=8.

- 3. By number of dotted edges.
 - p=0, (T,F'06): Simplices and Esselmann's polytopes only. $d \le 4$, $n \le d+2$.
 - p=1, (T,F'07): Only polytopes with $n \leq d+3$. $d \leq 6$ and d=8.
 - $p \le n d 2$, (T,F'07): finitly many polytopes. Algorithm.

- 3. By number of dotted edges.
 - p=0, (T,F'06): Simplices and Esselmann's polytopes only. d < 4, n < d+2.
 - p=1, (T,F'07): Only polytopes with $n \leq d+3$. $d \leq 6$ and d=8.
 - $p \le n d 2$, (T,F'07): finitly many polytopes. Algorithm.

• (T,F'06): If all Lanner subdiagrams are of order 2, then $d \le 13$. (for compact or simple finite volume polytops).

Essential polytopes

A Coxeter polytope P is essential iff

- P generates a maximal reflection group;
- P is not glued of two smaller Coxeter polytopes.

Question: Is the number of essential polytopes finite?

Is there any in dim > 8?

Problem: How to determine if two combinatorial polytopes are of the same combinatorial types?

Polytopes where presented by lists of vertices

triangular 3-prism 1,3,4 2,3,4 Example: with bases 1 and 2
$$\longleftrightarrow$$
 1,3,5 2,3,5 and sides 3,4,5 1,4,5 2,4,5

• Same combinatorial type \longleftrightarrow Same presentaion up to permutation

Problem: How to determine if two combinatorial polytopes are of the same combinatorial types?

Polytopes where presented by lists of vertices

triangular 3-prism 1,3,4 2,3,4 Example: with bases 1 and 2
$$\longleftrightarrow$$
 1,3,5 2,3,5 and sides 3,4,5 1,4,5 2,4,5

• Same combinatorial type \longleftrightarrow Same presentation up to permutation

Idea: compare the numbers of missing faces of each size.

 $(t_2, t_3, t_4, \dots, t_n)$, $t_i = \#$ (missing faces of order i).

Missing face is a minimal set of vertices defining no simplex in the complex.

Complex of missing faces for any simplicial complex:

$$\Sigma \longrightarrow \Sigma_1 \longrightarrow \Sigma_2 \longrightarrow \Sigma_3 \longrightarrow \dots$$

 $(t_2^j, t_3^j, t_4^j, \dots, t_n^j)$, $t_i^j = \#(\text{missing faces of order } i \text{ in } \Sigma_j)$.

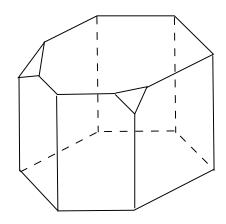
Example: triangular prism.

\sum	Σ_1	Σ_2	Σ_3	Σ_4	Σ_5	Σ_6	Σ_7
1,3,4	1,2	1,3	1,2	1,3	1,2	3,4,5	1,3,4
1,3,5 1,4,5	3,4,5	1,4 1,5	3,4 3,5	1,4 1,5	1,3,4 1,3,5	1,2,3 1,2,4	1,3,5 1,4,5
2,3,4 2,3,5		2,3 2,4	4,5	2,3 2,4	1,4,5 2,3,4	1,2,5	2,3,4 2,3,5
2,4,5		2,5		2,5	2,3,5		2,4,5
				3,4,5	2,4,5		

$$\Sigma_{\uparrow} \longrightarrow \Sigma_1 \longrightarrow \Sigma_2 \longrightarrow \ldots \longrightarrow \Sigma_k$$

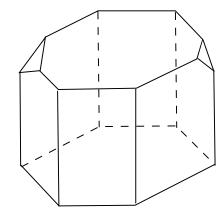
$$(t_2^0, t_3^0, t_4^0, \dots, t_n^0)$$
 $(t_2^1, t_3^1, t_4^1, \dots, t_n^1)$
 $(t_2^2, t_3^2, t_4^2, \dots, t_n^2)$
 $(t_2^k, t_3^k, t_4^k, \dots, t_n^k)$

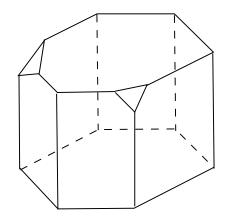
Conjecture: Do these numbers determine a polytope?



$$(0, 16, 0, 0, 0, 0, 0, 0, 0)$$

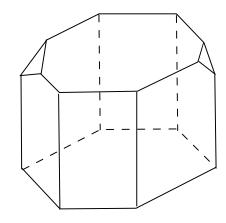
$$(18, 20, 0, 0, 0, 0, 0, 0, 0) \qquad (18, 21, 0, 0, 0, 0, 0, 0, 0)$$





$$(18, 20, 0, 0, 0, 0, 0, 0, 0) (18, 21, 0, 0, 0, 0, 0, 0, 0)$$

$$k = 158381$$



$$k = 666517$$

Question: Do these numbers determine

a simplicial complex?

Question: Do these numbers determine

a simplicial complex?

No: They do not differ

$$\Delta \in \Sigma^* \Leftrightarrow \Sigma \setminus \Delta \notin \Sigma.$$

$$\Delta \in \Sigma^* \iff \Sigma \setminus \Delta \notin \Sigma.$$

$$\Sigma_0 \longrightarrow \Sigma_1 \longrightarrow \Sigma_2 \longrightarrow \Sigma_3 \longrightarrow \dots$$

$$\Delta \in \Sigma^* \iff \Sigma \setminus \Delta \notin \Sigma.$$

$$\Delta \in \Sigma^* \iff \Sigma \setminus \Delta \notin \Sigma.$$

$$\Sigma_0 \longrightarrow \Sigma_1 \longrightarrow \Sigma_2 \longrightarrow \Sigma_3 \longrightarrow \dots$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow$$

$$\Sigma_0^* \longleftarrow \Sigma_1^* \longleftarrow \Sigma_2^* \longleftarrow \Sigma_3^* \longleftarrow \dots$$

